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Abstract 

Interest in graph representation learning (GRL) has recently skyrocketed. In general, there are 

three broad types of GRL approaches that have developed in response to the availability of 

labeled data. The first one is network embedding, which is all about learning relational structure 

representations without supervision. The second one is called graph regularized neural networks, 

and it uses graphs to teach semi-supervised learning by adding a regularization goal to neural 

network losses. Finally, graph neural networks are designed to learn differentiable functions 

across arbitrary-structured discrete topologies. Interestingly, however, there has been relatively 

no effort to integrate the three paradigms, even though these fields are somewhat popular. Here, 

we strive to connect graph neural networks, graph regularization, and network embedding. In an 

effort to bring together several separate areas of study, we provide a thorough taxonomy of GRL 

approaches. In particular, we suggest the GRAPHEDM framework, which unifies well- known 

methods for learning graph representations using semi-supervised (e.g. GraphSage, GCN, 

GAT) and unsupervised (e.g., DeepWalk, node2vec) means. We fitted more than thirty existing 

techniques into this framework to demonstrate GRAPHEDM's generalizability. We think this 

unified perspective does double duty: it lays the groundwork for future study in the field and 

helps us comprehend the thinking underlying these techniques. 

 

 

Keywords: Learning on Manifolds, Relational Learning, Geometric Deep Learning, and 

Network Embedding 

 
 

Introduction 

Developing representations for intricate 

structured data sets is no easy feat. Data 

defined on a discretized Euclidean domain is 

one kind of structured data that has seen a 

plethora of effective models produced in the 

last ten years.  

 

 

One example is the use of recurrent neural 

networks for modeling sequential data, like 

text or movies. These networks are  able  to  

collect  sequential 
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information and provide efficient representations, as 

shown by their performance on machine translation and 

voice recognition tasks. Convolutional neural networks 

(CNNs) are another example; they have achieved 

remarkable performance in pattern recognition tasks like 

image classification and voice recognition by 

parameterizing neural networks according to structural 

priors like shift- invariance. These remarkable 

achievements have only been applicable to certain kinds 

of data with a straightforward relational structure, such as 

sequential data or data that follows  regular  patterns. 

Data is not always so regular; complex relationship 

structures often emerge,  and comprehending the 

interplay between objects requires data extraction from 

such systems. Social networks, computational chemistry, 

 biology, recommendation systems, semi- 

supervised learning, and other domains make use of 

graphs, which are universal data structures that can 

represent complex relational data (made up of nodes and 

edges) (Gilmer et al., 2017; Stark et al., 2006; Konstas et 

al., 2009; Garcia and Bruna, 2018). Since graph 

topologies  are  not  always consistent and may 

change greatly across graphs and even between nodes in 

the same graph, it is difficult to construct networks with 

strong structural priors for graph-structured data. 

Irregular graph domains are particularly incompatible 

with operations like convolutions. For example, since all 

of the pixels in an image have the same neighborhood 

structure, it is possible to use the same filter weights 

everywhere in the picture. Nevertheless, given that every 

node in a network may have a unique neighborhood 

structure, it is impossible to provide an ordering of nodes 

(Fig. 1). On top of that, non- Euclidean domains are not 

applicable to geometric priors (such as shift invariance) 

used in Euclidean convolutions (for instance, translations 

may not even be specified on such domains). 

 

Research into Geometric Deep Learning 

(GDL) emerged in response to these 

difficulties; GDL seeks to apply deep 

learning methods to data that is not 

geometrically normal. A lot of people are 

very interested in using machine learning 

techniques on graph-structured data because 

of how common graphs   are   in   real-

world 
applications.Learned embeddings are low-dimensional 

continuous   vector representations of 

graph- structured data; GRL techniques are one such 

approach. Unsupervised GRL and supervised (or semi-

supervised) GRL are the two main categories of GRL 

learning tasks. The first set of rules is based on the notion 

of learning low-dimensional Euclidean representations 

that retain the original graph structure. For a particular 

downstream prediction job, such node or graph 

categorization, the second family likewise learns low-

dimensional Euclidean representations. In contrast to the 

unsupervised environment, whereby inputs are often 

graph structures, the supervised setting typically uses a 

variety of signals specified on graphs, or node attributes, 

as inputs. Whereas in the inductive learning scenario, the 

underlying discrete graph domain may change (for 

example, when predicting molecular attributes where 

each molecule is a graph), in the transductive learning 

context, it can remain stable (for example, when 

predicting user qualities in a huge social network). Lastly, 

it should be mentioned that the majority of supervised and 

unsupervised approaches learn representations in vector 

spaces that are based on geometry, but there has been a 

recent uptick in interest in non-Euclidean representation 

learning. This kind of learning attempts to acquire 

knowledge about embedding spaces that are not based on 

geometry, such as spherical or hyperbolic spaces. The 

primary goal of this research is to use an embedding space 

that is continuous and similar to the input data's 

underlying discrete structure (for instance, hyperbolic 

space is a continuous form  of  trees;  Sarkar,  2011). 

 

We think it is critical to synthesize and explain these 

techniques in one cohesive and understandable 

framework since the GRL field is expanding at a 

remarkable rate. This review aims to provide a 

comprehensive overview of representation learning 

techniques for graph- structured data so that readers may 

have a better understanding of the many ways in which 

deep learning models use graph structure. 

There are an assortment of graph 

representation learning questionnaires 

available. For a full review of shallow 

network embedding and auto-encoding 

approaches, there are various surveys that 

address the topic. We recommend (Cai et al., 

2018;Chen et al., 2018a; Goyal and Ferrara, 2018b; 

Hamilton et al., 2017b; Zhang et al., 2018a) for this. 

Second, for data that is not Euclidean, such manifolds or 

graphs, Bronstein et al. (2017) provides a comprehensive 

review of deep learning methods. Thirdly, approaches 

applying deep learning to graphs, particularly graph 

neural networks, have been covered in many recent 

surveys (Battaglia et al., 2018; Wu et al., 2019; Zhang et 

al., 2018c; Zhou et al., 2018). Rather than establishing 

links across several areas of graph representation 

learning, most of these studies focus down on only one. 

We develop a general framework called the Graph 
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Encoder Decoder Model (GRAPHEDM) to classify 

previous work into four main areas: (i) methods for 

shallow embedding, (ii) methods for auto-encoding, (iii) 

methods for graph regularization, and (iv) methods for 

graph neural networks (GNNs). This framework expands 

upon the encoder-decoder model proposed by 

Hamilton et al. (2017b).We also provide a Graph 

Convolution Framework (GCF) for describing 

convolution-based  GNNs, which have shown to be very 

effective in many different domains. According to 

Veliˇckovi'c et al. (2018), we are able to examine and 

contrast several GNNs, which differ in their design. These 

GNNs range from those that operate in the Graph Fourier1 

domain to those that use self-attention as a neighborhood

 aggregation function. The goal of this 

comprehensive synthesis of current research is to provide 

readers with a better understanding of the many graph-

based learning approaches so that they may identify their 

similarities and differences, as well as their possible 

expansions and limits. However, there are three ways in 

which our survey differs  from  earlier   ones: 

 

We introduce a general framework, GRAPHEDM, to 

describe a broad range of super- vised and 

unsupervised methods that operate on graph- 

structured data, namely shal- low embedding 

methods, graph regularization methods, graph 

auto- encoding methods and graph neural 

networks. 

Our survey is the first attempt to unify and view 

these different lines of work from the same 

perspective, and we provide a general taxonomy (Fig. 

3) to understand differences and similarities between 

these methods. In particular, this taxonomy en

- 

 
 

 

(a) Grid (Euclidean). (b) Arbitrary graph (Non-Euclidean). 

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs. 

 

represents more than 30 different GRL algorithms. 

To better understand the differences between 

various strategies, it is helpful to describe them 

within a thorough taxonomy. 

• We provide an open-source GRL library that 
contains cutting-edge GRL methods and crucial 

graph applications including link prediction and 

node categorization. You may 

find our implementation

 is    open    to the    public. 

Organization of the survey Section 2 provides a 

clear statement of the issue setting for GRL and a 

review of fundamental graph concepts. Section 

2.2.1 explains the function of node features in GRL 

and their relationship to supervised GRL; Section 

2.2.2 differentiates between inductive and 
transductive learning; Section 2.2.3.1 distinguishes 

between positional and structural embeddings; and 

Section 2.2.4 distinguishes between supervised and 

unsupervised embeddings. We also define and 

discuss the differences between these important 

concepts in GRL. Section 3 then presents 

GRAPHEDM, a generic framework that may be 

used in inductive and transductive learning contexts 

to define supervised and unsupervised GRL 

techniques, with or without node characteristics. We 

provide a comprehensive taxonomy of GRL 

approaches (Fig. 3) based on GRAPHEDM, which 

incorporates more than thirty contemporary GRL 

models. We use this taxonomy to characterize both 

supervised (Section 5) and unsupervised (Section 

4) methods. Section 6 concludes with an overview 

of graph applications. 

1. Preliminaries 
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2. Graph representation learning 
approaches attempt to address 

the generalized network 

embedding issue; for an 

overview, see Table 1. Here, 

we offer the notation used 

throughout the article. 

 Notation Meaning 

 
Abbreviations 

GRL 

GRAPHED 

M GNN 

GCF 

Graph Representation 

Learning Graph Encoder Decoder 

Model Graph Neural Network 

Graph Convolution Framework 

 

 

 

 

 

Graph notation 

G = (V, E) 

vi ∈ V 
dG(·, ·) 
deg(·) 

D ∈ R|V |×|V | 

W ∈ R|V |×|V 

| W̃  ∈ R|V |×|V 

| 

A ∈ {0, 1}|V |×|V | 

L ∈ R|V |×|V | L̃  

∈ R|V |×|V | Lrw ∈ 
R|V |×|V | 

Graph with vertices (nodes) V and edges E 

Graph vertex 

Graph distance (length of shortest path) Node 

degree 

Diagonal degree matrix 

Graph weighted adjacency matrix 

Symmetric normalized adjacency matrix ( W̃  = D−1/2WD−1/2) Graph 

unweighted weighted adjacency matrix 

Graph unnormalized Laplacian matrix (L = D − W ) Graph 

normalized Laplacian matrix ( L˜ = I − D−1/2WD−1/2) Random walk 

normalized Laplacian (Lrw = I − D−1W ) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRAPHEDM 

notation 

d0 

X ∈ R|V |×d0 

d 

Z ∈ R|V |×d 

dl 

Hl ∈ R|V |×dÆ 

Y 

yS ∈ R|V |×|Y| yˆS 

∈ R|V |×|Y| s(W ) ∈ 
R|V |×|V 

| Ŵ  ∈ R|V |×|V | 

ENC(·; ΘE) 

DEC(·; ΘD) 

DEC(·; ΘS) 
LS  (yS, yˆS; Θ) 

SUP 

LG,REG(W, Ŵ  ; 

Θ) 

LREG(Θ) 

d1(·, ·) 

d2(·, ·) 

|| · ||p 

|| · ||F 

Input feature dimension 

Node feature matrix 

Final embedding dimension 

Node embedding matrix 

Intermediate hidden embedding dimension at layer l 

Hidden representation at layer l 

Label space 

Graph (S = G) or node (S = N ) ground truth labels Predicted 

labels 

Target similarity or dissimilarity matrix in graph regularization Predicted 

similarity or dissimilarity matrix 

Encoder network with parameters ΘE Graph 

decoder network with parameters ΘD Label 

decoder network with parameters ΘS Supervised 

loss 

Graph regularization loss 

Parameters’ regularization loss 

Matrix distance used for to compute the graph regularization loss 

Embedding distance for distance-based decoders 

p−norm Frobenuis 

norm 
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2.1 Definitions 

Table 1: Summary of the notation used in the paper. 
 

 

Definition 1 (Graph). A graph G given as a pair: 

G 

= (V, E), comprises a set of vertices (or nodes) V 
= 
{v1, . . . , v|V |} connected by edges E = {e1, . . . , 

e|E|}, where each edge ek is a pair (vi, vj) with vi, 

vj ∈ V 

. A graph is weighted if there exist a weight 

function: w : (vi, vj) → wij that assigns weight wij to 

edge connecting nodes vi, vj ∈ V . Otherwise, we 

say that the graph is unweighted. A graph is 

undirected if (vi, vj) ∈ E implies (vj, vi) ∈ E, 

i.e. the relationships are symmetric, and directed if 

the existence of edge (vi, vj) ∈ E does 

not necessarily imply (vj, vi) ∈ E. Finally, a graph can 

be homogeneous if nodes refer to one type of entity 

and edges to one relationship. It can be 

heterogeneous if it contains different 

types of nodes and edges. 
For instance, social networks are homogeneous 

graphs that can be undirected (e.g. to encode 

symmetric relations like friendship) or directed (e.g. 

to encode the relation following); weighted (e.g. co-

activities) or unweighted. 

Definition 2 (Path). A path P is a sequence of edges 

(ui1 , ui2 ), (ui2 , ui3 ), . . . , (uik , uik+1 ) of length k. 

A path is called simple if all uij are distinct from 

each other. Otherwise, if a path visits a node 

more than once, it is said to contain a cycle. 

Definition 3 (Distance). Given two nodes (u, v) in a 

graph G, we define the distance from u to v, denoted 

dG(u, v), to be the length of the shortest path from 

u to v, or ∞ if there exist no path from u to v. 

The graph distance between two nodes is the analog 

of geodesic lengths on manifolds. 

Definition 4 (Vertex degree). The degree, deg(vi), 

of a vertex vi in an unweighted graph is the number 

of edges incident to it. Similarly, the degree of a 

vertex vi in a weighted graph is the sum of incident 

edges weights. The degree matrix D of a graph with 

vertex set V is the |V | × |V | diagonal matrix such 

that Dii = deg(vi). 

Definition 5 (Adjacency matrix). A finite graph G 

= (V, E) can be represented as a square 

|V |×|V | adjacency matrix, where the elements of the 

matrix indicate whether pairs of nodes are adjacent or 

not. The adjacency matrix is binary for unweighted 

graph, A ∈ 

{0, 1}|V |×|V |, and non-binary for weighted graphs W 

∈ 
R|V |×|V |. Undirected graphs have symmetric ad- 

jacency  matrices,  in  which  case,  W̃   denotes 

ymmetrically-normalized adjacency matrix: 

W = D−1/2WD−1/2, where D is the degree matrix. 
Definition 6 (Laplacian). The

 unnormalized Laplacian of an 

u˜ndirected graph is the |V |× 

|V | matrix L = D − W. The symmetric 
normalized 
Laplacian is L = I − D−1/2WD−1/2. 
The random walk normalized Laplacian is 

the matrix Lrw = I − D−1W. 

The name random walk comes from the fact that 

D−1W is a stochastic transition matrix that can 

be interpreted as the transition probability 

matrix of a random walk on the graph. The 

graph Laplacian is a key operator on graphs and 

can be interpreted as the analogue of the 

continuous Laplace-Beltrami operator on 

manifolds. Its eigenspace capture important 

properties about a graph (e.g. cut information 

often used for spectral graph clustering) but can 

also serve as a basis for smooth functions 

defined on the graph for semi-supervised 

learning (Belkin and Niyogi, 2004). The graph 

Laplacian is also closely related to the heat 

equation on graphs as it is the generator of 

diffusion processes on graphs and can be used 

to derive algorithms for semi- supervised 

learning on graphs (Zhou et al., 2004). 

Definition 7 (First order proximity). The first 

order proximity between two nodes vi and vj is 

a local similarity measure indicated by the 

edge weight wij. In other words, the first- order 

proximity captures the strength of an edge 

between node vi and node vj (should it exist). 

Definition 8 (Second-order proximity). The 

second order proximity between two nodes vi 

and vj is measures the similarity of their 

neighborhood structures. Two nodes in a 

network will have a high second-order 

proximity if they tend to share many neighbors. 

Note that there exist higher-order measures of 

proximity between nodes such as Katz Index, 

Adamic Adar or Rooted PageRank (Liben-

Nowell and Kleinberg, 2007). These notions of 
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node proximity are particularly important in 

network embedding as many algorithms are 

optimized to preserve some order of node 

proximity in the graph. 

 

The generalized network embedding 

problem Network embedding is the task that 

aims at learning a mapping function from a 

discrete graph to a continuous domain. 

Formally, given a graph G = (V, E) with 

weighted adjacency matrix W ∈ R|V |×|V |, the 

goal is to learn low-dimensional vector 

representations {Zi}i∈V 

(embeddings) for nodes in the graph {vi}i∈V , such that 

important graph properties (e.g. local or global 

structure) are preserved in the embedding space. For 

instance, if two nodes have similar connections in the 

original graph, their learned vector representations 

should be close. Let Z ∈ R|V |×d denote the node2 

embedding matrix. In practice, we often want low- 

dimensional embeddings (d |V |) for scalability 

purposes. That is, network embedding can be viewed 

as a dimensionality reduction technique for graph 

structured data, where the input data is defined on a 

non- Euclidean, high-dimensional, discrete domain. 

 

NODE FEATURES IN NETWORK EMBEDDING 

Definition 9 (Vertex and edge fields). A vertex field 

is a function defined on vertices f : V → R and 

similarly an edge field is a function defined on edges: 

F : E → R. Vertex fields and edge fields can be viewed 

as analogs of scalar fields and tensor fields on 

manifolds. Graphs may have node attributes (e.g. 

gender or age in social networks; article contents for 

citation networks) which can be represented as 

multiple vertex fields, commonly referred to as node 

features. In this survey, we denote node features with 

X ∈ R|V |×d0 , where d0 is the input feature dimension. 

Node features might provide useful information 

about a graph. Some network embedding algorithms 

leverage this information by learning mappings: 

W, X → Z. 
In other scenarios, node features might be unavailable 

or not useful for a given task: net- work embedding 

can be featureless. That is, the goal is to learn graph 

representations via mappings: 

W → Z. 
Although we present the model taxonomy via embedding 

nodes yielding Z ∈ R|V |×d, it can also be extended for 

models that embed an entire graph i.e. with Z ∈ Rd as a d- 

dimensional vector for the whole graph (e.g. (Duvenaud et 

al., 2015; Al-Rfou et al., 2019)), or embed graph edges Z 

∈ R|V |×|V |×d as a (potentially sparse) 3D matrix with Zu,v ∈ 

Rd representing the embedding of edge (u, v). Note that 

depending on whether node features are used or not in 

the embedding algorithm, the learned representation 

could capture different aspects about the graph. If nodes 

features are being used, embeddings could capture both 

structural and semantic graph information. On the 

other hand, if node features are not being used, 

embeddings will only preserve structural 

information of the graph. 

Finally, note that edge features are less common than 

node features in practice, but can also be used by 

embedding algorithms. For instance, edge features 

can be used as regularization for node embeddings 

(Chen et al., 2018c), or to compute messages from 

neighbors as in message passing networks (Gilmer et 

al., 2017). 

 
TRANSDUCTIVE AND INDUCTIVE 

NETWORK EMBEDDING 

Historically, a popular way of categorizing a network 
embedding method has been by whether the model 

can generalize to unseen data instances – methods 

are referred to as operating in either a 

transductive or inductive setting (Yang et al., 

2016). While we do not use this concept for 

constructing our taxonomy, we include a brief 

discussion here for completeness. 

In transductive settings, it assumed that all 

nodes in the graph are observed in training 

(typically the nodes all come from one fixed 

graph). These methods are used to infer 

information about or between observed nodes in 

the graph (e.g. predicting labels for all nodes, 

given a partial labeling). For instance, if a 

transductive method is used to embed the nodes 

of a social network, it can be used to suggest new 

edges (e.g. friendships) between the nodes of the 

graph. One major limitation of models learned 

in transductive settings is that they fail to 

generalize to new nodes (e.g. evolving graphs) 

or new graph instances. 

On the other hand, in inductive settings, 

models are expected to generalize to new 

nodes, edges, or graphs that were not observed 

during training. Formally, given training 

graphs (G1, . . . , Gk), the goal is to learn a 

mapping to continuous representations that 

can generalize to unseen test graphs (Gk+1, . . . 

, Gk+l). For instance, inductive learning can be 

used to embed molecular graphs, each 

representing a molecule structure (Gilmer et 

al., 2017), generalizing to new graphs and 

showing error margins within chemical 

accuracy on many quantum properties. 

Embedding dynamic or temporally evolving 

graphs is also another inductive graph 

embedding problem. 

http://www.ijpast.in/


ISSN 2229-6107 www.ijpast.in      

Vol 9,Issuse 1.Jan 2019 
 
 

8 

 

There is a strong connection between inductive 

graph embedding and node features (Sec- tion 

2.2.1) as the latter are usually necessary for most 

inductive graph representation learn- ing 

algorithms. More concretely, node features can be 

leveraged to learn embeddings with parametric 

mappings and instead of directly optimizing the 

embeddings, one can optimize the mapping’s 

parameters. The learned mapping can then be 

applied to any node (even those that were not 

present a training time). On the other hand, when 

node features are not available, the first mapping 

from nodes to embeddings is usually a one-hot 

encoding which fails to generalize 

to new graphs where the canonical node ordering is not 

available. 

Finally, we note that this categorization of graph 

embedding methods is at best an incomplete lens for 

viewing the landscape. While some models are 

inherently better suited to different tasks in practice, 

recent theoretical results (Srinivasan and Ribeiro, 

2020) show that models previously assumed to be 

capable of only one setting (e.g. only transductive) 

can be used in both. 

 

POSITIONAL VS STRUCTURAL NETWORK 

EMBEDDING 

An  emerging  categorization  of  graph  embedding 
algorithms is about whether the learned embeddings are 

positional or structural. Position-aware embeddings 

capture global relative positions of nodes in a graph 

and it is common to refer to embeddings as positional 

if they can be used to approximately reconstruct the 

edges in the graph, preserving distances such as shortest 

paths in the original graph (You et al., 2019). Examples 

of positional embedding algorithms include random 

walk or matrix factorization methods. On the other hand, 

structure-aware embeddings capture local structural 

information about nodes in a graph, i.e. nodes with 

similar node features or similar structural roles in a 

network should have similar embeddings, regardless of 

how far they are in the original graph. For instance, 

GNNs usually learn embeddings by incorporating 

information for each node’s neighborhood, and the 

learned representations are thus structure-aware. 

In the past, positional embeddings have commonly been 

used for unsupervised tasks where positional 

information is valuable (e.g. link prediction or 

clustering) while structural embeddings have been used 

for supervised tasks (e.g. node classification or whole 

graph classification). More recently, there has been 

attempts to bridge the gap between positional and 

structural representations, with positional GNNs (You et 

al., 2019) and theoretical frameworks showing the 

equivalence between the two classes of embeddings 

(Srinivasan and Ribeiro, 2020). 

UNSUPERVISED AND SUPERVISED NETWORK 

EMBEDDING 

Depending on whether extra information 
like node or graph labels is supplied, 
network embedding may be either 
supervised or unsupervised. The former case 
involves using simply the graph structure 
and, in certain cases, node attributes. 
Optimization of a reconstruction loss—a 
measure of the learnt embeddings' ability to 
mimic the original graph—is often used in 
unsupervised network embedding with the 
objective of learning embeddings that retain 
the graph structure. The objective of 
supervised network embedding is to 
improve models for a particular job, such 
graph or node classification, and to train 
embeddings for a specific purpose, like 
predicting graph or node properties. In 
Section 3, we go into further depth on the 
distinctions between supervised and 
unsupervised approaches, and we utilize the 
amount of supervision to construct our 
taxonomy. 

A Taxonomy of Graph 

Embedding Models 
We first describe our proposed framework, 

GRAPHEDM, a general framework for GRL 

(Sec- tion 3.1). In particular, GRAPHEDM is 

general enough that it can be used to succinctly 

de- scribe over thirty GRL methods (both 

unsupervised and supervised). We use 

GRAPHEDM to introduce a comprehensive 

taxonomy in Section 3.2 and Section 3.3, which 

summarizes exiting works with shared notations 

and simple block diagrams, making it easier to 

under- stand similarities and differences 

between GRL methods. 

 

The GraphEDM framework 
The GRAPHEDM framework builds on top of 

the work of Hamilton et al. (2017b), which 

describes unsupervised network embedding 

methods from an encoder-decoder perspective. 
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Figure 2: Illustration of the GRAPHEDM framework. Based on the supervision 

available, methods will use some or all of the branches. In particular, 

unsupervised methods do not leverage label decoding for training and only 

optimize the similarity or dissimilarity decoder (lower branch). On the other 

hand, semi-supervised and supervised methods leverage the additional 

supervision to learn models’ parameters (upper branch). 
Cruz et al. (2019) also recently proposed a modular 

encoder-based framework to describe and compare 

unsupervised graph embedding methods. Different 

from these unsupervised frameworks, we provide a 

more general framework which additionally 

encapsulates super- vised graph embedding methods, 

including ones utilizing the graph as a regularizer 

(e.g. Zhu and Ghahramani (2002))E, and graph neural 

networks such as ones based on message passing 

(Gilmer et al., 2017; Scarselli et al., 2009) or graph 

convolutions (Bruna et al., 2014; Kipf and Welling, 

2016a). 

Input The GRAPHEDM framework takes as input 

an undirected weighted graph G = (V, E), with 

adjacency matrix W ∈ R|V |×|V |, and optional 

node features X ∈ R|V |×d0 . In (semi-)supervised 

settings, we assume that we are given training 

target labels for nodes (denoted N ), edges (denoted 

E), and/or for the entire graph (denoted G). We 

denote the supervision signal as S ∈ {N, E, G}, as 

presented below. 

Model The GRAPHEDM framework can be 

decomposed as follows: 

Graph encoder network ENCΘE  : R|V |×|V | × R|V 
|×d0 

→ R|V |×d, parameterized by Θ , which combines 

the graph structure with node features (or not) 

to produce node embedding matrix Z ∈ R|V |×d 

as: 

Z = ENC(W, X; ΘE). 
As we shall see next, this node embedding 

matrix might capture different graph prop- erties 

depending on the supervision used for training. 

Graph decoder network DECΘD : R|V |×d → R|V |×|V 
|, parameterized by ΘD, which uses the node 
embeddings Z to compute similarity or dissimilarity 

scores for all noydEe pairs, producing a matrix Ŵ  ∈ 
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R|V |×|V | as: 

Ŵ = DEC(Z; ΘD). 

Classification network DECΘS : R|V |×d → R|V 
|×|Y|, where Y is the label space. This network is 

used in (semi-)supervised settings and 

parameterized by Θ . 

The output is a distribution over the labels yˆS , 

using node embeddings, as: 
yS = DEC(Z; ΘS). 

^
 

 ̂

 
Our GRAPHEDM framework is general (see Fig. 2 

for 
an illustration). Specific choices of the 
aforementioneydG (encoder and decoder) networks 
allows GRAPHEDM to 

realize specific graph embedding methods. Before 

presenting the taxonomy and showing realizations 

of various methods using our framework, we briefly 

discuss an application perspective. 

Output The GRAPHEDM model can return a 

reconstructed graph similarity or dissim- 

ilarity matrix Ŵ  (often used to train unsupervised 

embedding algorithms), as well as a 

output labels yS for superv^ised applications. The 

label output space Y varies depending on the 
supervised application. 

 

Node-level supervision, with yN ∈ Y|V |, where^ Y 

represents the node label space. If Y is categorical, 

then this is also known as (semi-)supervised node 

classification (Section 6.2.1), in which case the label 

decoder network produces labels for each node in 

the graph. If the embedding dimensions d is such 

that d = 

|Y|, then the label decoder network can be just a 

simple softmax activation across the rows of Z, 

produc- 

ing a distribution over labels for each node. 

Additionally, the graph decoder network might also 

be used in supervised node-classification tasks, as it 

can be used to regu- larize embeddings (e.g. 

neighbor nodes should have nearby embeddings, 

regardless of node 
{ΘE, ΘD, ΘS} denote all model parameters. ing a 

combination of the following loss terms: 

Supervised loss term, LS   ,  which  compares  

the labels). 

|V | ×E |dV  g| e-level supervision, with  ̂ ∈ 
Y , where Y 
represents the edge label 

space. For example, Y can be 

multinomial in knowledge graphs (for 

describing the 

types of relationships between two 

entities), setting Y = {0, 1}#(relation types).

 It iSs 

common to have #(relation types) = 1, and 
this is is known as link nomenclature and 

position link prediction as an 
unsupervised task (Section 4). Then in 

lieu of yE we utilize W , the output of the 
graph decoder network (which is learned 
to reconstruct a target similarity or 

dissimilarity matrix) to rank potential 
edges. 

 

Graph-level supervision, with ^ ∈ Y, 

where Y is the graph label space. In 
the graph classification task (Section 6.2.2), 

the label decoder network converts node 

embeddings into a single graph labels, using 

graph pooling via the graph edges captured 

by W . More concretely, the graph pooling 

operation is similar to pooling in standard 

CNNs, where the goal is to downsample local 

feature representations to capture higher- 

level information. However, unlike images, 

graphs don’t have a regular grid structure and 

it is hard to define a pooling pattern which 

could be applied to every node in the graph. 

A possible way of doing so is via graph 

coarsening, which groups similar nodes into 

clusters to produce smaller graphs 

(Defferrard et al., 2016). There exist other 

pooling methods on graphs such as DiffPool 

(Ying et al., 2018b) or SortPooling (Zhang et 

al., 2018b) which creates an ordering of nodes 

based on their structural roles in the graph. 

Details about graph pooling operators is 

outside the scope of this work and we refer the 

reader to recent surveys (Wu et al., 2019) for 

a more in-depth treatment. 

Taxonomy of objective functions 
We now focus our attention on the optimization 

of models that can be described in the 

GRAPHEDM framework by describing the 

loss functions used for training. Let Θ = 

 

 

 

 

Historical Context 

There is a general two-step process that 

most machine learning models adhere to. 

Initially, they forego the need of human 

 ̂
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feature building in favor of automatically 

extracting significant patterns from data. 

According to Bengio et al. (2013), this is the 

part where representation learning takes 

place. A second step involves putting these 

representations to use in supervised (like 

classification) or unsupervised (like 

clustering, visualization, and nearest-

neighbor search) applications further down 

the line. This task is referred to as

 downstream

 processing.3 To facilitate the 

downstream process, a good data 

representation should be both expressive 

and concise, preserving the original data's 

significant qualities. Overfitting and other 

problems induced by the curse of 

dimensionality may be mitigated, for 

example, by using low-dimensional 

representations of high-dimensional 

datasets. When it comes to GRL, a graph 

encoder is used for representation learning, 

while a graph or label decoder is employed 

for jobs further down the line, such as node 

classification and link prediction. Graph 

encoder-decoder networks have 

traditionally been used for manifold 

learning. It is usual to presume that input 

data, even if it exists on a high-dimensional 

Euclidean space, is inherently contained on 

a low-dimensional manifold. The classic 

manifold hypothesis describes this. This 

inherently low-dimensional manifold is 

what manifold learning methods aim to 

retrieve. A discrete approximation of the 

manifold is often constructed initially, in the 

form of a graph with edges connecting 

adjacent points in the ambient Euclidean 

space. Graph distances are a reasonable 

surrogate for local and global manifold 

distances because manifolds are locally 

Euclidean. Secondly, while keeping graph 

distances as accurate as feasible, "flatten" 

this representation of the graph by learning 

a non-linear mapping from graph nodes to 

points in low-dimensional Euclidean space. 

Typically, these representations are more 

manageable compared to the initial high- 

dimensional ones, and they may 

subsequently be  used   in   subsequent   

applications. 

When looking for solutions to the 

manifold learning issue, non-linear4 

dimensionality reduction strategies 

were all the rage in the early 2000s. For 

example, spectral approaches are used 

by Laplacian Eigenmaps (LE) (Belkin 

and Niyogi, 2002) to calculate 

embeddings, and IsoMap (Tenenbaum 

et al., 2000) to maintain global network 

geodesics by a mix of the Floyd-

Warshall algorithm and the 

conventional Multi-dimensional 

scaling algorithm. In Section 4.1.1, we 

outline a few of these techniques that 

use shallow encoders. Despite their 

significant influence on machine 

learning, manifold dimensionality 

reduction approaches are not scalable to 

big datasets. Consider the time 

complexity of IsoMAP: it exceeds 

quadratic time due to the need to 

compute all pairs of shortest pathways. 

Since the mappings from node to 

embeddings are non-parametric, they 

cannot generate embeddings for 

additional datapoints, which is a 

potentially more significant drawback. 

The issue of graph embedding has seen 

several proposals for non-shallow 

network topologies in recent years. Our 

GRAPHEDM framework may be used 

to define graph neural networks and  

graph  regularization  networks.  When 

compared to traditional approaches, 
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GRL models often provide more 

expressive, scalable, and generalizable 

embeddings due to their use of deep 

neural networks' expressiveness. 

 

 
In the next sections, we review recent methods for 

supervised and unsupervised graph embedding 

techniques using GRAPHEDM and summarize the 

proposed taxonomy in Fig. 3. 

Unsupervised Graph Embedding 
Using the taxonomy outlined earlier, we 

will now provide a summary of current 

methods for unsupervised graph 

embedding. Without using task-specific 

labels for the network or its nodes, these 

approaches map the graph into a continuous 

vector space, including its edges and/or 

nodes. By learning to rebuild matrices that 

measure the similarity or dissimilarity 

between nodes, such as the adjacency 

matrix, some of these approaches aim to 

learn embeddings that maintain the network 

structure. There are methods that use a 

contrastive objective. For example, one 

could compare nearby node-pairs to 

faraway ones: nodes that are co-visited in 

short random walks should have a higher 

similarity score than distant ones. Another 

would compare real graphs to fake ones: the 

mutual information between a graph and all 

of its nodes should be higher in real graphs 

than in fake ones. 

Shallow embedding methods 

The encoder function in shallow embedding 

techniques is a basic embedding lookup; 

these methods are transductive graph 

embedding methods. The shallow encoder 

function is simply: for every node vi in V, 

there is a corresponding low-dimensional 

learnable embedding vector Zi in Rd. 

Z = ENC(ΘE) 

= ΘE ∈ R|V |×d. 

 

The data structure in the embedding 

space matches the underlying graph 

structure, thanks to learnt node 

embeddings. Generally speaking, it's 

not dissimilar to principal component 

analysis (PCA) and other 

dimensionality reduction techniques; 

however, the input data may not be 

linear. Specifically, graph embedding 

issues may be addressed using 

techniques for non-linear 

dimensionality reduction, which often 

begin with constructing a discrete graph 

from the data in order to approximate 

the manifold. We take a look at the 

distance-based and outer product-based 

approaches to shallow graph 

embedding. 

 

Distance-based methods By using a 

preset distance function, these 

approaches maximize embeddings in a 

way that keeps points that are close 

together in the graph (as shown by their 

graph distances, for example) as near 

together in the embedding space as 

feasible. In a formal sense, the decoder 

network may provide either non-

Euclidean (Section 4.1.2) or Euclidean 

(Section 4.1.1) embeddings by 

computing pairwise distance for a 

certain distance function d2: 

We now cover 

spectrum-free 

methods, which 

approximate 

convolutions in 

the spectral do-

  main 

 overcoming 

computational   limitations 

of SCNNs by  avoiding 
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explicit 

computation of 

the Laplacian’s 

eigendecompositi

on. 

SCNNs filters 

are neither 

localized nor 

paramet- 

in Eq. (17) are all free. To overcome 
this 
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issue, sprectrum-free methods 

use polynomial expansions to 

approximate 

 

 

 

 

 

(a) GCN layers. (b) HGCN layers. 

 

 

 

 

 

Figure 13: Euclidean (left) and hyperbolic (right) embeddings of a tree 

graph. Hyperbolic embeddings learn natural hierarchies in the embedding 

space (depth indicated by color). Reprinted with permission from (Chami et 

al., 2019). 
Non-Euclidean Graph Convolutions 
Hyperbolic shallow 

embeddings enable embeddings of hierarchical 

graphs with smaller dis- tortion than Euclidean 

embeddings. However, one major downside of shallow 

embeddings is that they are inherently transductive and 

cannot generalize to new graphs. On the other hand, 

Graph Neural Networks, which leverage node features, 

have achieved state-of-the-art performance on inductive 

graph embedding tasks.Recently, there has been interest 

in extending Graph Neural Networks to learn non- 

Euclidean embeddings and thus benefit from both the 

expressiveness of Graph Neural Networks and hyperbolic 

geometry. One major challenge in doing so is how to 

perform convolutions in a non- Euclidean space, where 

standard operations such as inner products and matrix 

multiplications are not defined. 

 

 

Hyperbolic  Graph Convolutional Neural 

Networks (HGCN) (Chami et al., 2019) and 

Hyperbolic Graph Neural Networks (HGNN) (Liu et 

al., 2019) apply graph convolutions in hyperbolic space 

by leveraging the Euclidean tangent space, which 

provides a first-order approximation of the hyperbolic 

manifold at a point. For every graph convolution step, 

node embeddings are mapped to the Euclidean tangent 

space at the origin, where convolutions are applied, and 

then mapped back to the hyperbolic space. These 

approaches yield significant improvements on graphs 

that exhibit hierarchical structure (Fig. 13). 

 

Summary of supervized graph embedding 
This section presented a number of methods that process 

task labels (e.g., node or graph labels) at training time. As 

such, model parameters are directly optimized on the 

upstream task. 

Shallow methods use neither node features X nor 

adjacency W in the encoder (Section 5.1), but utilize the 

adjacency   to   ensure consistency. Such methods 

are useful in transductive settings, if only one graph is 

given, without node features, a fraction of nodes are 
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labeled, and the goal is to recover labels for unlabeled 

nodes. 

Applications 

Many different kinds of applications, both 

supervised and unsupervised, may benefit 

from graph representation learning 

techniques. When learning embeddings in an 

unsupervised setting, task-specific labels are 

not processed. Instead, the graph serves as a 

tool for self- monitoring. Using unsupervised 

embedding techniques (Section 4, top branch 

of the Taxonomy in Fig. 3), one may learn 

embeddings that preserve the network (i.e. 

neighborhoods) or the structural equivalence 

of nodes (for distinction, see Section 2.2.3). 

Alternatively, in supervised applications, 

such as graph or node classification, the 

optimization of node embeddings is done 

directly for a particular job. Section 5, the 

bottom branch of the Taxonomy in Figure 3, 

describes supervised embedding approaches 

that may be used in this context. Here are a 

few of the most common GRL jobs and the 

methods used to do them, as shown in Table 

5. What follows is a rundown of typical  
 

 

supervised and unsupervised graph uses. 

Unsupervised applications 
GRAPH RECONSTRUCTION 

Graph reconstruction is the gold standard for 

unsupervised graph applications. The 

objective here is to train mapping functions 

(parametric or not) that retain graph features 

like node similarity while mapping nodes to 

 dense distributed representations. By 

reducing a reconstruction error—the error in 

retrieving the original graph from learnt 

embeddings—models may be trained, and 

graph reconstruction doesn't need any 

supervision. For some instances of 

reconstruction aims, see Section 4, and to 

learn about the techniques used for this 

purpose, see Section 5. Similar to 

dimensionality reduction, the overarching 

objective of graph reconstruction is to 

combine incoming data into a low- 

dimensional representation. Graph 

reconstruction models aim to compress data 

specified on graphs into low-dimensional 

vectors, rather than the usual way of reducing 

dimensionality (e.g., principal component 

analysis) which involves converting high- 

dimensional vectors into low- dimensional ones. 

10.1.1 LINK  PREDICTION 

The goal of link prediction is to forecast 

which edges in a graph will eventually take a 

certain path. To rephrase, link prediction 

tasks aim to anticipate the appearance of 

linkages that have not yet been detected, such 

as links that might emerge in the future for 

networks that are both dynamic and temporal. 

Furthermore, malicious links may be located 

and eliminated with the use of link 

prediction. Common examples of this kind of

  application are 

recommendation systems that utilize graph 

learning models to forecast the interactions 

between users and products and social 

networks that use these models to forecast the 

friendships between users. 

Method 
Training complexity 

Training 

input 
Memory Computation 

(a) DeepWalk (Perozzi, 2014) O(|V |d) O(c2d|V | log2 |V |)  
 
 (b) node2vec (Grover, 2016) O(|V |d) O(c2d|V |) 
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LINE (Tang, 2015) 
(c) HOPE (Ou, 

2016) GF 
(Ahmed, 2013) 

O(|V |d) O(|E|d) 
 

 
W 

(d) 
SDNE (Wang, 
2016)  DNGR 
(Cao, 2016) 

O(|V |bD) O(|V |bM) 

(e) 
GraRep (Cao, 2015) 

WYS (Abu-el-haija, 2018) 
O(|V |2) O(|V |3c + |V |2d) 

(f) HARP (Chen, 2018) inherits W 

(g) Splitter (Epasto, 2019) inherits W 

(h) MDS (Kruskal, 1964) O(|V |2) O(|V |3) 

X induces W (i) 
LP (Zhu, 2002) 

LLE (Roweis, 2000) 
O(|V |) O(|E| × iters) 

(j) GNN Methods O(|V |D) O(|E|D + |V |M) X, W 

(k) SAGE (Hamilton, 2017) O(bFHD) O(bFH—1D + bFHM) X, W 

(l) GTTF (Markowitz, 2021) O(bFHD) O(bFH—1D + bFHM) X, W 
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Summarization and real-world applications 

of GRL techniques (Table 5). The columns 

running from right to left show the 

following: method classes, the hardware 

cost to train the method, and real cases 

where the methods have been useful: inputs 

to the methods, which may be either an 

adjacency matrix (W) or node characteristics 

(X), or both. This is how we get the Training 

Complexity. In the method classes (a-h), "c" 

represents the size of the context (such as 

the length of a random walk) and "d" the 

size of the embedding dictionary; both are 

parameters of node embedding techniques. 

The embedding dictionary is stored in (a) 

DeepWalk and (b) node2vec, with (V d) 

floating-point entries. During training, a 

predetermined number of walks with a 

defined duration are simulated from every 

node V. Along these walks, the dot products 

of all node-pairs within a window of size c 

are computed. Both the hierarchical softmax 

(a) and the negative sampling (b) are applied 

to every pair. To see the complexity per 

batch, just replace the two V terms on the 

left with batch size b. But to keep things 

simple, we look at it per period. (c) All 

edges are cycled through by LINE (Tang, 

2015), HOPE (Ou, 2016), and GF (Ahmed, 

2013). (d) The adjacency matrix is used to 

train auto- encoders via SDNE and DNGR, 

with batch- size b, and the total dimensions 

of all layers denoted by A dA. To handle 

floating-point 

operations in matrix multiplications, the 

formula = A dAdA+1 is used. With full-

batch, b equals V. (e) GraRep and WYS store 

a dense square matrix with (V 2) non-zero 

elements, and they elevate the transition 

matrix to the power of c. Their complexity 

is algorithm- specific since (f) HARP 

(Chen, 2018) and (g) Splitter can execute 

any algorithm, for example, (a-e). In this 

case, we assume that both the average 

number of persons per node for Splitter and 

the number of times HARP is activated (the 

graph's scales) are minimal (V). 

(h) While LE necessitates the entire 

eigendecomposition of the graph laplacian 

matrix (to get the eigenvectors 

corresponding to the fewest eigenvalues), 

MDS calculates all-pairs similarity. If the 

number of label classes is small, (i) LP and 

LLE will loop over edges up to "iters" 

iterations. (j) include GCN, GAT,  

MixHop,  GIN,  GGNN,  MPNN, 

ChebNet, and MoNet graph convolution 

algorithms  (Kipf,  2016;  Defferrard,  

2016; 

Abu-el-haija,  2019;  Xu,  2018;  Li,  2015; 
Gilmer, 2017; Xu, 2018; Xu, 2018; Monti, 

2017). The creators of those techniques gave 

a full-batch implementation, which we 

presume is naïve. After adding up all of the 

floating- point operations performed by its 

neighbors (a total of E floats), each node in 

a given layer multiplies that total by the 

layer filter (a total of V floats). Lastly, 

sampling approaches such as (k-l) enable 

learning to scale to bigger networks by 

reducing the hardware required of the 

training algorithm and separating memory 

complexity from graph size. (k) For each 

node in the batch (with a size of b), (l) GTTF 

samples F nodes, and for each node's 

neighbors, F as well. This continues until 

the tree height reaches H. We disregard the 

runtime complexity of data pre-processing 

for(k) and (l) since it has to be calculated 

only once per graph, independent of the 

number of (hyperparameter) sweep 

computations. A common approach for 

training link prediction models is to mask some 

edges in the graph (positive and negative edges), 

train a model with the remaining edges and then 

test it on the masked set of edges. Note that link 

prediction is different from graph reconstruction. 
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In link prediction, we aim at predicting links that 

are not observed in the original graph while in 

graph reconstruction, we only want to compute 

embeddings that preserve the graph structure 

through reconstruction error minimization. 
Finally, while link prediction has similarities with 

supervised tasks in the sense that we have labels for 

edges (positive, negative, unobserved), we group it 

under the unsupervised class of applications since edge 

labels are usually not used during training, but only 

used to measure the predictive quality of embeddings. 

That is, models described in Section 4 can be applied 

to the link prediction problem. 

 

12.1.1 CLUSTERING 

3. The discovery of 

communities is one of the 

numerous

 real-world 

applications of clustering. 

For example, clusters may 

be seen in biological 

networks (as collections 

of proteins with shared 

characteristics) or social 

networks (as associations 

of individuals with same 

interests). 

Keep in mind that clustering 

issues may be solved using the 

unsupervised

 approac

hes discussed in this review. 

For example, one might apply 

a clustering algorithm, such as 

k- means, to embeddings that 

are produced by an encoder. 

Another option is to include 

clustering into the learning 

process while using a shallow 

or Graph Convolution 

embedding model 

(Rozemberczki et al., 2019; 

Chiang et al., 2019; Chen et 

al., 2019a). 

 

 
13.1.1 VISUALIZATION 

4. For visualizing graphs, 

there are several ready-

made tools that map nodes 

onto two- dimensional 

manifolds. Network 

scientists are able to get a 

qualitative understanding 

of graph characteristics, 

node interactions, and 

node clusters via the use 

of visualizations. Force-

Directed Layouts-based 

approaches with different 

web- app Javascript 

implementations are 

among the popular tools. 

To achieve this 

visualization, one can use 

an unsupervised graph 

embedding method such 

as t- distributed stochastic 

neighbor embeddings (t-

SNE) or principal 

component analysis 

(PCA) after training an 

encoder-decoder model 

(which is equivalent to a 
shallow embedding or graph 

convolution network) (Maaten 

and Hinton, 2008; Jolliffe, 2011). 

Graph learning techniques are 

often evaluated qualitatively 

using this approach (embedding 

→ dimensionality 

reduction). To color the 

nodes in 2D visualization 

plots, one may utilize their 

characteristics if the nodes 

have any. As seen in visual 

representations of 

different approaches, 

good embedding 
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algorithms place nodes in 

the embedding space that 

have comparable 

properties close together 

(Perozzi et al., 2014; Kipf 

and Welling, 2016a; Abu- 

El-Haija et al., 2018). To 

conclude, approaches that 

map every graph to a 

representation may also be 

projected into two 

dimensions to display and 

qualitatively assess graph-

level features, in addition 

to mapping every node to 

a 2D coordinate (Al-Rfou   

et   al.,   2019). 

 

 
4.1 Supervised  applications 

 

4.1.1 NODE CLASSIFICATION 

5. An essential supervised 

graph application is node 

classification, which aims 

to develop representations 

of nodes that can reliably 

predict their labels. In 

citation networks, node 

labels may represent 

scientific 

subjects; in social networks, 

they might represent gender 

and other characteristics. One 

typical use case is semi-

supervised node classification 

due to the high cost and time 

commitment associated with 

labeling huge graphs. The 

objective in semi-supervised 

situations is to use node 

linkages to predict 

characteristics of unlabeled 

nodes, with just a small 

percentage of nodes being 

tagged. Since there is a single 

partly labeled fixed graph in 

this context, it is considered 

transductive. Inductive node 

classification is another 

option; this is the process of 

determining how to categorize 

nodes in different

 networ

ks. Keep in mind that if the 

node attributes are descriptive 

of the goal label, they may 

greatly improve performance 

on classified nodes jobs. In 

fact, by integrating structural 

data with semantic 

information derived from 

features, state-of-the-art 

performance on multiple node 

classification benchmarks has 

been attained by more recent 

approaches as GCN (Kipf and 

Welling, 2016a) or 

GraphSAGE (Hamilton et al., 

2017a). However, other 

approaches, such random 

walks on graphs, do not take 

use of feature information and 

so perform worse on these 

tasks. 
15.1.1 GRAPH 

CLASSIFICATION 

One example of a supervised application is graph 

classification, the goal of which is to use an input graph to 

predict labels at the graph level. Due to the constant 

introduction of novel graphs during testing, graph 

classification problems are fundamentally

 inductive. Biochemical activities and online social 

networks are also common choices. Graphs representing 

molecules are often used in the biological field. A feature 

vector that is a 1-hot encoding of an atom's number may 

serve as a node in these graphs, and a bond can be 

represented by an edge between two nodes, with the kind 

of the bond being indicated by the feature vector. One 
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example of a task-dependent graph-level label is 

MUTANG, which indicates the mutagenicity of a 

medicine against bacteria (Debnath et al., 1991). 

Typically, people are represented as nodes in online social 

networks, while connections or interactions are 

symbolized by edges. As an example, there are a lot of 

graphs in the Reddit graph classification jobs 

 (Yanardag  and Vishwanathan, 

2015). An edge will link two nodes in a graph that 

represents a conversation thread, such as when one person 

comments on another's remark. 

Given a comment graph, the objective is to identify the 

community (sub-reddit) where the conversation occurred. 

While tasks such as node classification and edge 

prediction include pooling at the node and edge levels, 

respectively, graph classification tasks need a different 

kind of pooling to aggregate data at the node and graph 

levels. As said before, expanding this concept of pooling 

to any kind of graph is a challenging and ongoing topic of 

study. Node order shouldn't affect the pooling function. 

For example, several approaches use basic pooling, 

including taking the mean or total of all latent vectors at 

the node level in the network (Xu et al., 2018). Ying et al., 

2018b; Cangea et al., 2018; Gao and Ji, 2019; Lee et al., 

2019 are among the approaches that employ differentiable 

pooling. Tsitsulin et al. (2018a), Al-Rfou et al. (2019), 

and Tsitsulin et al. (2020a) all provide supervised 

approaches for learning graph- level representations, but 

there are also many unsupervised methods. Some 

unsupervised graph-level models that stand out include

 reviewed by Viswanathan et al. (2010) and 

Kriege et al. (2020) as graph kernels (GKs).Although 

GKs are not our primary concern, we do touch on their 

links to GRAPHEDM here. Graph-level tasks, such graph 

categorization, are suitable for GKs. In order to convert 

any two graphs into a scalar, GK may automatically apply 

a similarity function. Counting the number of walks (or 

pathways) that two graphs have in common is one way 

that traditional GKs calculate graph similarity. For 

example, each walk may be stored as a series of node 

labels. Common practice dictates using node degrees as 

labels in the absence of explicit labels. The capacity of 

GKs to identify (sub-)graph isomorphism is a common 

metric for analysis. When ordering of nodes is ignored, two 

(sub-)graphs are considered isomorphic if they are 

identical. According to the 1-dimensional Weisfeiler- 

Leman (1-WL) heuristic, two sub-graphs are considered 

isomorphic since sub-graph isomorphism is NP-hard. In 

each graph, histograms are used to tally the statistics of the 

nodes (e.g., how many nodes with the label "A" have an 

edge to nodes with the label "B"). If two graphs' 

histograms, obtained from the same 1-hop neighborhood, 

are equal, then the graphs are considered isomorphic 

according to the 1-WL heuristic. An example of a GNN 

that has been shown to achieve the 1-WL heuristic is the 

Graph Isomorphism Network (GIN; Xu et al., 2018). This 

means that GIN can only map two graphs to the same 

latent vector if they are considered isomorphic according 

to the 1-WL heuristic. In some newer studies, GKs and 

GNNs are used together. Using the similarity of the 

"tangent space" of the goal with respect to the Gaussian-

initialized GNN parameters, Du et al. (2019) models the 

similarity of two graphs, and Chen et al. 

(2020) extracts walk patterns. There isn't 

any GNN training in either (Du et al., 2019; 

Chen et al., 2020). Instead, kernel support 

vector machines and other kernelized 

algorithms are used to the pairwise Gram 

matrix during training. Therefore, our GCF 

and GRAPHEDM frameworks are not well-

suited to include these methodologies. 

However, there are other approaches that 

don't rely on indirectly computing graph-to-

graph similarity scalar scores but instead 

directly map graphs to high-dimensional 

latent spaces. One example is Morris et al.'s 

(2019) k-GNN network, which is 

deliberately coded as a GNN but can 

actually implement the k-WL heuristic 

(which is identical to 1-WL but where 

histograms are produced up-to k-hop 

neighbors). Therefore, our GCF and 

GRAPHEDM frameworks can define the k- 

GNN model classes. 

 
Conclusion  
Open Research Directions We presented a 
standard method for comparing ML 

models trained on graph-structured data in this survey. 
Deep graph embedding techniques, graph auto-
encoders, graph regularization techniques, and graph 
neural networks are all included in our expanded 
GRAPHEDM framework, which was before used for 
unsupervised network embedding. Additionally, we 
presented a graph convolution framework (GCF) for 
describing and comparing graph neural networks that 
rely on convolution, such as spatial and spectral graph 
convolutions in particular. We included more than 30 
supervised and unsupervised techniques for graph 
embedding in our exhaustive taxonomy of GRL 
methods, which we presented using this framework. 
With any luck, the results of this poll will inspire further 
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GRL research, which should lead to solutions for the 
problems these models are experiencing right now. The 
taxonomy is very useful for practitioners since it helps 
them understand the many tools and applications 
available and makes it easy to choose the right 
technique for each situation. Furthermore, academics 
who have just published Researchers may use the 
taxonomy to organizetheir inquiries, locate relevant 
literature, establish reliable baselines for comparison, 
and choose suitable methods for data analysis. 
Although GRL approaches have shown to be very 
effective in node classification and link prediction, 
there are still several issues that need to be 
addressed. We then go on to talk about the 
difficulties and future prospects of graph 
embedding models in terms of research. 

Evaluation and benchmarks 

Standard benchmarks for node 

classification or link prediction are 

usually used to evaluate the approaches 

presented in this review. To illustrate 

the point, graph embedding techniques 

are often evaluated against citation 

networks. The findings may differ 

greatly depending on the datasets' splits 

or training processes (such as early 

halting), which is a problem with these 

tiny citation benchmarks, as shown in 

recent research (Shchur et al., 2018). 

Using strong and consistent evaluation 

methodologies, as well as expanding the 

scope of assessment beyond small node 

categorization and link prediction 

benchmarks, is crucial for the 

improvement of GRL approaches. New 

graph benchmarks with leaderboards 

(Hu et al., 2020; Dwivedi et al., 2020) 

and graph embedding libraries (Fey and 

Lenssen, 2019; Wang et al., 2019; 

Goyal and Ferrara, 2018a) are 

examples of recent development in this 

approach. Similarly, in order to test 

GNNs' reasoning skills, Sinha et al. 

(2020) suggested a series of exercises 

based on first-

order logic. 

 

Fairness in Graph Learning To 

prevent models from correlating'sensitive' 

characteristics with the model's predicted 

output, a new area called Fairness in Machine 

Learning is developing (Mehrabi et al., 2019). 

Considering the association of the graph 

structure (the edges) and the feature vectors of the 
nodes with the final output, these considerations 

might be particularly significant for graph learning 

challenges. 

Bose and Hamilton (2019) state that adversarial 

learning is the most prevalent method for 

implementing fairness requirements in models. 

This method may be used to GRL in order to debias 

the model's predictions with respect to the sensitive 

feature(s). But there are no certain assurances on 

the precise amount of bias eliminated using 

adversarial approaches. The debiasing job itself 

may be difficult to accomplish with several 

debiasing strategies (Gonen and Goldberg, 2019). 

Provable guarantees for debiasing GRL have been 

the focus of recent work in the  field  (Palowitch  

and  Perozzi,  2019). 

 

Application to large and realistic graphs 
Graph learning techniques are typically reserved 

for datasets of tens of thousands to hundreds of 

thousands of nodes. Still, there are far bigger graphs 

in the actual world, with billions of nodes. A 

Distributed Systems configuration with several 

computers, like MapReduce, is necessary for 

methods that scale for big graphs (Lerer et al., 2019; 

Ying et al., 2018a) (Dean and Ghemawat, 2008). Is 

there a way for a researcher to use a home computer 

to apply a learning approach to a very big graph that 

fits on a single hard drive (e.g., with a one terabyte 

size) but does not fit on RAM? See how this stacks 

up against a computer vision challenge using a large 

picture collection (Deng et al., 2009; Kuznetsova et 

al., 2020). Any model that can fit on RAM can be 

trained on personal computers, regardless of the size 

of the dataset. Graph embedding models, in 

particular those whose parameters grow in size as 

the graph's nodes do, may find this issue very 

difficult to solve. 

Even picking the right graph to utilize as input 

might be challenging at times in business. The 
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Google system Grale, which learns the right graph 

from several characteristics, is described by 

Halcrow et al. (2020). For graph learning on 

massive datasets, Grale uses similarity search 

methods (such as locality sensitive hashing). A 

recent study by Rozemberczki et al. (2021) adds an 

attention network to the Grale model,    enabling    

end-to-end    learning.We anticipate that learning 

algorithms for big graphs that are still executable 

on a single computer will present new mathematical 

and practical problems. We are hopeful that 

scholars would prioritize this area so that non-

expert practitioners, like a neurology researcher, 

may access and use these learning methods to 

evaluate the human brain's sub-graph, which is 

comprised of neurons and synapses represented as 

nodes and edges. 

 

Molecule generation Learning on 

graphs has a great potential for 

helping molecular scientists to reduce 

cost and time in the laboratory. 

Researchers proposed methods for 

predicting quantum properties of 

molecules (Gilmer et al., 2017; 

Duvenaud et al., 2015) and for 

generating molecules with some 

desired properties (Liu et al., 2018; 

De Cao and Kipf, 2018; Li et al., 

2018; Simonovsky and Komodakis, 

2018; You et al., 2018). A review of 

recent methods can be found in (Elton 

et al., 2019). Many of these methods 

are concerned with manufacturing 

materials with certain properties (e.g. 

conductance and malleability), and 

others are concerned drug design 

(Jin et al., 2018; Ragoza et al., 2017; 

Feng et al., 2018). 
Combinatorial optimization 

Numerous fields encounter 

computationally challenging 

challenges, such as routing science, 

cryptography, decision-making, and 

planning. Computationally hard 

problems are those for which the 

techniques used to find the best solution 

have poor scalability. We cite (Bengio 

et al., 2018) for a summary of the ways 

that have recently attracted attention 

insolving combinatorial optimization 

issues by using machine learning 

approaches, such as reinforcement

 learning. 

Recently, there has been interest in using 

graph embeddings to approximate solutions 

to NP-hard problems (Khalil et al., 2017; 

Nowak et al., 2017; Selsam et al., 2018; 

Prates et al., 2019). Graphs are a natural 

representation for many hard issues, such as 

SAT and vertex cover; in fact, many 

problems may be described in terms of 

graphs. These techniques use a data-driven 

approach to solving computationally 

difficult issues, such as determining 

whether a specific instance (e.g., node) is 

part of the best solution from among many 

instances of the problem. Find assignments 

that strive to accomplish a goal (e.g., the 

minimal conductance cut) in other works 

that optimize graph partitions (Bianchi et 

al., 2020; Tsitsulin  et al., 2020b). All 

of these methods use GNNs as their starting 

point since GNNs, thanks to their relational 

inductive biases, can better depict graphs 

than regular neural networks (e.g. 

permutation invariance). Current solutions 

still outperform these data-driven 

approaches, but GNNs have shown promise 

in generalizing to bigger problem cases 

(Nowak et al., 2017; Prates et al., 2019). 

Lamb et al. (2020) provides a 

comprehensive overview of GNN- based 

approaches to combinatorial optimization in 

their latest study on neural symbolic

 learni

ng. 
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Non-Euclidean embeddings The underlying space 

geometry is an important part of graph embeddings, 
as we saw in Sections 4.1.2 and 5.6. All graphs are 
discrete complex, non-Euclidean structures with 

high dimensions; however, there is currently no 
simple method for encoding such data into 
embeddings with low dimensions that maintain the 
graph topology (Bronstein et al., 2017). Hyperbolic 
and mixed- product space embeddings are two 
examples of non- Euclidean embeddings that have 
recently attracted attention and made strides in the 
field of learning (Gu et al., 2018; Nickel and Kiela, 

2017). In comparison to their Euclidean 
counterparts, these non-Euclidean embeddings 
have the potential for embeddings that are more 
expressive. For example, compared to Euclidean 
embeddings, hyperbolic embeddings exhibit 
significantly less distortion when representing 
hierarchical data (Sarkar, 2011). This has led to 

state- of-the-art outcomes in numerous 
contemporary applications, including linguistics 
tasks (Tifrea et al., 2018; Le et al., 2019) and 
knowledge graph link prediction (Balazevic et al., 
2019; Chami et al., 2020). 

 
Non-Euclidean embeddings often bring two 

difficulties: first, hyperbolic space precision 

problems (e.g., at the Poincar'e ball boundary) 

(Sala et al., 2018; Yu and De Sa, 2019), and 

second, difficult Riemannian optimization 

(Bonnabel, 2013; Becigneul and Ganea, 2018). 

Furthermore, it is not apparent how to choose the 

appropriate shape for an input graph. An intriguing 

area for future research is the process of selecting 

or learning the appropriate geometry for a specific 

discrete graph, even though there are already 

discrete measures for the graphs' tree-likeliness, 

such as Gromov's four-point condition 

(Jonckheere et al., 2008; Abu-Ata and Dragan, 

2016; Chen et al., 2013; Adcock et al., 2013). 

Assurances based on theory Recent developments 

in graph embedding model design have 

outperformed state-of-the- art methods in several 

domains. Nevertheless, our knowledge of the 

theoretical promises and constraints of graph 

embedding models is currently restricted. Xu et al. 

(2018), Verma and Zhang (2019), Morris et al. 

(2019), and Garg et al. (2020) all apply current 

findings from learning theory to the issue of GRL, 

which is a new field of study on GNN 

representational power. If we want to know what 

the theoretical benefits and drawbacks of graph 

embedding techniques are, we need to build 

theoretical frameworks. 
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