
ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

1

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

2

A Model and Extensive Taxonomy for Machine

Learning on Graphs
Y. Prasada Reddy

Abstract

Interest in graph representation learning (GRL) has recently skyrocketed. In general, there are

three broad types of GRL approaches that have developed in response to the availability of

labeled data. The first one is network embedding, which is all about learning relational structure

representations without supervision. The second one is called graph regularized neural networks,

and it uses graphs to teach semi-supervised learning by adding a regularization goal to neural

network losses. Finally, graph neural networks are designed to learn differentiable functions

across arbitrary-structured discrete topologies. Interestingly, however, there has been relatively

no effort to integrate the three paradigms, even though these fields are somewhat popular. Here,

we strive to connect graph neural networks, graph regularization, and network embedding. In an

effort to bring together several separate areas of study, we provide a thorough taxonomy of GRL

approaches. In particular, we suggest the GRAPHEDM framework, which unifies well- known

methods for learning graph representations using semi-supervised (e.g. GraphSage, GCN,

GAT) and unsupervised (e.g., DeepWalk, node2vec) means. We fitted more than thirty existing

techniques into this framework to demonstrate GRAPHEDM's generalizability. We think this

unified perspective does double duty: it lays the groundwork for future study in the field and

helps us comprehend the thinking underlying these techniques.

Keywords: Learning on Manifolds, Relational Learning, Geometric Deep Learning, and

Network Embedding

Introduction

Developing representations for intricate

structured data sets is no easy feat. Data

defined on a discretized Euclidean domain is

one kind of structured data that has seen a

plethora of effective models produced in the

last ten years.

One example is the use of recurrent neural

networks for modeling sequential data, like

text or movies. These networks are able to

collect sequential

Assistant Professor

Department of Computer Science and Engineering

KSRM College of Engineering (A) Kadapa

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

3

information and provide efficient representations, as

shown by their performance on machine translation and

voice recognition tasks. Convolutional neural networks

(CNNs) are another example; they have achieved

remarkable performance in pattern recognition tasks like

image classification and voice recognition by

parameterizing neural networks according to structural

priors like shift- invariance. These remarkable

achievements have only been applicable to certain kinds

of data with a straightforward relational structure, such as

sequential data or data that follows regular patterns.

Data is not always so regular; complex relationship

structures often emerge, and comprehending the

interplay between objects requires data extraction from

such systems. Social networks, computational chemistry,

 biology, recommendation systems, semi-

supervised learning, and other domains make use of

graphs, which are universal data structures that can

represent complex relational data (made up of nodes and

edges) (Gilmer et al., 2017; Stark et al., 2006; Konstas et

al., 2009; Garcia and Bruna, 2018). Since graph

topologies are not always consistent and may

change greatly across graphs and even between nodes in

the same graph, it is difficult to construct networks with

strong structural priors for graph-structured data.

Irregular graph domains are particularly incompatible

with operations like convolutions. For example, since all

of the pixels in an image have the same neighborhood

structure, it is possible to use the same filter weights

everywhere in the picture. Nevertheless, given that every

node in a network may have a unique neighborhood

structure, it is impossible to provide an ordering of nodes

(Fig. 1). On top of that, non- Euclidean domains are not

applicable to geometric priors (such as shift invariance)

used in Euclidean convolutions (for instance, translations

may not even be specified on such domains).

Research into Geometric Deep Learning

(GDL) emerged in response to these

difficulties; GDL seeks to apply deep

learning methods to data that is not

geometrically normal. A lot of people are

very interested in using machine learning

techniques on graph-structured data because

of how common graphs are in real-

world
applications.Learned embeddings are low-dimensional

continuous vector representations of

graph- structured data; GRL techniques are one such

approach. Unsupervised GRL and supervised (or semi-

supervised) GRL are the two main categories of GRL

learning tasks. The first set of rules is based on the notion

of learning low-dimensional Euclidean representations

that retain the original graph structure. For a particular

downstream prediction job, such node or graph

categorization, the second family likewise learns low-

dimensional Euclidean representations. In contrast to the

unsupervised environment, whereby inputs are often

graph structures, the supervised setting typically uses a

variety of signals specified on graphs, or node attributes,

as inputs. Whereas in the inductive learning scenario, the

underlying discrete graph domain may change (for

example, when predicting molecular attributes where

each molecule is a graph), in the transductive learning

context, it can remain stable (for example, when

predicting user qualities in a huge social network). Lastly,

it should be mentioned that the majority of supervised and

unsupervised approaches learn representations in vector

spaces that are based on geometry, but there has been a

recent uptick in interest in non-Euclidean representation

learning. This kind of learning attempts to acquire

knowledge about embedding spaces that are not based on

geometry, such as spherical or hyperbolic spaces. The

primary goal of this research is to use an embedding space

that is continuous and similar to the input data's

underlying discrete structure (for instance, hyperbolic

space is a continuous form of trees; Sarkar, 2011).

We think it is critical to synthesize and explain these

techniques in one cohesive and understandable

framework since the GRL field is expanding at a

remarkable rate. This review aims to provide a

comprehensive overview of representation learning

techniques for graph- structured data so that readers may

have a better understanding of the many ways in which

deep learning models use graph structure.

There are an assortment of graph

representation learning questionnaires

available. For a full review of shallow

network embedding and auto-encoding

approaches, there are various surveys that

address the topic. We recommend (Cai et al.,

2018;Chen et al., 2018a; Goyal and Ferrara, 2018b;

Hamilton et al., 2017b; Zhang et al., 2018a) for this.

Second, for data that is not Euclidean, such manifolds or

graphs, Bronstein et al. (2017) provides a comprehensive

review of deep learning methods. Thirdly, approaches

applying deep learning to graphs, particularly graph

neural networks, have been covered in many recent

surveys (Battaglia et al., 2018; Wu et al., 2019; Zhang et

al., 2018c; Zhou et al., 2018). Rather than establishing

links across several areas of graph representation

learning, most of these studies focus down on only one.

We develop a general framework called the Graph

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

4

Encoder Decoder Model (GRAPHEDM) to classify

previous work into four main areas: (i) methods for

shallow embedding, (ii) methods for auto-encoding, (iii)

methods for graph regularization, and (iv) methods for

graph neural networks (GNNs). This framework expands

upon the encoder-decoder model proposed by

Hamilton et al. (2017b).We also provide a Graph

Convolution Framework (GCF) for describing

convolution-based GNNs, which have shown to be very

effective in many different domains. According to

Veliˇckovi'c et al. (2018), we are able to examine and

contrast several GNNs, which differ in their design. These

GNNs range from those that operate in the Graph Fourier1

domain to those that use self-attention as a neighborhood

 aggregation function. The goal of this

comprehensive synthesis of current research is to provide

readers with a better understanding of the many graph-

based learning approaches so that they may identify their

similarities and differences, as well as their possible

expansions and limits. However, there are three ways in

which our survey differs from earlier ones:

We introduce a general framework, GRAPHEDM, to

describe a broad range of super- vised and

unsupervised methods that operate on graph-

structured data, namely shal- low embedding

methods, graph regularization methods, graph

auto- encoding methods and graph neural

networks.

Our survey is the first attempt to unify and view

these different lines of work from the same

perspective, and we provide a general taxonomy (Fig.

3) to understand differences and similarities between

these methods. In particular, this taxonomy en

-

(a) Grid (Euclidean). (b) Arbitrary graph (Non-Euclidean).

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs.

represents more than 30 different GRL algorithms.

To better understand the differences between

various strategies, it is helpful to describe them

within a thorough taxonomy.

• We provide an open-source GRL library that
contains cutting-edge GRL methods and crucial

graph applications including link prediction and

node categorization. You may

find our implementation

 is open to the public.

Organization of the survey Section 2 provides a

clear statement of the issue setting for GRL and a

review of fundamental graph concepts. Section

2.2.1 explains the function of node features in GRL

and their relationship to supervised GRL; Section

2.2.2 differentiates between inductive and
transductive learning; Section 2.2.3.1 distinguishes

between positional and structural embeddings; and

Section 2.2.4 distinguishes between supervised and

unsupervised embeddings. We also define and

discuss the differences between these important

concepts in GRL. Section 3 then presents

GRAPHEDM, a generic framework that may be

used in inductive and transductive learning contexts

to define supervised and unsupervised GRL

techniques, with or without node characteristics. We

provide a comprehensive taxonomy of GRL

approaches (Fig. 3) based on GRAPHEDM, which

incorporates more than thirty contemporary GRL

models. We use this taxonomy to characterize both

supervised (Section 5) and unsupervised (Section

4) methods. Section 6 concludes with an overview

of graph applications.

1. Preliminaries

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

5

2. Graph representation learning
approaches attempt to address

the generalized network

embedding issue; for an

overview, see Table 1. Here,

we offer the notation used

throughout the article.

 Notation Meaning

Abbreviations

GRL

GRAPHED

M GNN

GCF

Graph Representation

Learning Graph Encoder Decoder

Model Graph Neural Network

Graph Convolution Framework

Graph notation

G = (V, E)

vi ∈ V
dG(·, ·)
deg(·)

D ∈ R|V |×|V |

W ∈ R|V |×|V

| W̃ ∈ R|V |×|V

|

A ∈ {0, 1}|V |×|V |

L ∈ R|V |×|V | L̃

∈ R|V |×|V | Lrw ∈
R|V |×|V |

Graph with vertices (nodes) V and edges E

Graph vertex

Graph distance (length of shortest path) Node

degree

Diagonal degree matrix

Graph weighted adjacency matrix

Symmetric normalized adjacency matrix (W̃ = D−1/2WD−1/2) Graph

unweighted weighted adjacency matrix

Graph unnormalized Laplacian matrix (L = D − W) Graph

normalized Laplacian matrix (L˜ = I − D−1/2WD−1/2) Random walk

normalized Laplacian (Lrw = I − D−1W)

GRAPHEDM

notation

d0

X ∈ R|V |×d0

d

Z ∈ R|V |×d

dl

Hl ∈ R|V |×dÆ

Y

yS ∈ R|V |×|Y| yˆS

∈ R|V |×|Y| s(W) ∈
R|V |×|V

| Ŵ ∈ R|V |×|V |

ENC(·; ΘE)

DEC(·; ΘD)

DEC(·; ΘS)
LS (yS, yˆS; Θ)

SUP

LG,REG(W, Ŵ ;

Θ)

LREG(Θ)

d1(·, ·)

d2(·, ·)

|| · ||p

|| · ||F

Input feature dimension

Node feature matrix

Final embedding dimension

Node embedding matrix

Intermediate hidden embedding dimension at layer l

Hidden representation at layer l

Label space

Graph (S = G) or node (S = N) ground truth labels Predicted

labels

Target similarity or dissimilarity matrix in graph regularization Predicted

similarity or dissimilarity matrix

Encoder network with parameters ΘE Graph

decoder network with parameters ΘD Label

decoder network with parameters ΘS Supervised

loss

Graph regularization loss

Parameters’ regularization loss

Matrix distance used for to compute the graph regularization loss

Embedding distance for distance-based decoders

p−norm Frobenuis

norm

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

6

2.1 Definitions

Table 1: Summary of the notation used in the paper.

Definition 1 (Graph). A graph G given as a pair:

G

= (V, E), comprises a set of vertices (or nodes) V
=
{v1, . . . , v|V |} connected by edges E = {e1, . . . ,

e|E|}, where each edge ek is a pair (vi, vj) with vi,

vj ∈ V

. A graph is weighted if there exist a weight

function: w : (vi, vj) → wij that assigns weight wij to

edge connecting nodes vi, vj ∈ V . Otherwise, we

say that the graph is unweighted. A graph is

undirected if (vi, vj) ∈ E implies (vj, vi) ∈ E,

i.e. the relationships are symmetric, and directed if

the existence of edge (vi, vj) ∈ E does

not necessarily imply (vj, vi) ∈ E. Finally, a graph can

be homogeneous if nodes refer to one type of entity

and edges to one relationship. It can be

heterogeneous if it contains different

types of nodes and edges.
For instance, social networks are homogeneous

graphs that can be undirected (e.g. to encode

symmetric relations like friendship) or directed (e.g.

to encode the relation following); weighted (e.g. co-

activities) or unweighted.

Definition 2 (Path). A path P is a sequence of edges

(ui1 , ui2), (ui2 , ui3), . . . , (uik , uik+1) of length k.

A path is called simple if all uij are distinct from

each other. Otherwise, if a path visits a node

more than once, it is said to contain a cycle.

Definition 3 (Distance). Given two nodes (u, v) in a

graph G, we define the distance from u to v, denoted

dG(u, v), to be the length of the shortest path from

u to v, or ∞ if there exist no path from u to v.

The graph distance between two nodes is the analog

of geodesic lengths on manifolds.

Definition 4 (Vertex degree). The degree, deg(vi),

of a vertex vi in an unweighted graph is the number

of edges incident to it. Similarly, the degree of a

vertex vi in a weighted graph is the sum of incident

edges weights. The degree matrix D of a graph with

vertex set V is the |V | × |V | diagonal matrix such

that Dii = deg(vi).

Definition 5 (Adjacency matrix). A finite graph G

= (V, E) can be represented as a square

|V |×|V | adjacency matrix, where the elements of the

matrix indicate whether pairs of nodes are adjacent or

not. The adjacency matrix is binary for unweighted

graph, A ∈

{0, 1}|V |×|V |, and non-binary for weighted graphs W

∈
R|V |×|V |. Undirected graphs have symmetric ad-

jacency matrices, in which case, W̃ denotes

ymmetrically-normalized adjacency matrix:

W = D−1/2WD−1/2, where D is the degree matrix.
Definition 6 (Laplacian). The

 unnormalized Laplacian of an

u˜ndirected graph is the |V |×

|V | matrix L = D − W. The symmetric
normalized
Laplacian is L = I − D−1/2WD−1/2.
The random walk normalized Laplacian is

the matrix Lrw = I − D−1W.

The name random walk comes from the fact that

D−1W is a stochastic transition matrix that can

be interpreted as the transition probability

matrix of a random walk on the graph. The

graph Laplacian is a key operator on graphs and

can be interpreted as the analogue of the

continuous Laplace-Beltrami operator on

manifolds. Its eigenspace capture important

properties about a graph (e.g. cut information

often used for spectral graph clustering) but can

also serve as a basis for smooth functions

defined on the graph for semi-supervised

learning (Belkin and Niyogi, 2004). The graph

Laplacian is also closely related to the heat

equation on graphs as it is the generator of

diffusion processes on graphs and can be used

to derive algorithms for semi- supervised

learning on graphs (Zhou et al., 2004).

Definition 7 (First order proximity). The first

order proximity between two nodes vi and vj is

a local similarity measure indicated by the

edge weight wij. In other words, the first- order

proximity captures the strength of an edge

between node vi and node vj (should it exist).

Definition 8 (Second-order proximity). The

second order proximity between two nodes vi

and vj is measures the similarity of their

neighborhood structures. Two nodes in a

network will have a high second-order

proximity if they tend to share many neighbors.

Note that there exist higher-order measures of

proximity between nodes such as Katz Index,

Adamic Adar or Rooted PageRank (Liben-

Nowell and Kleinberg, 2007). These notions of

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

7

node proximity are particularly important in

network embedding as many algorithms are

optimized to preserve some order of node

proximity in the graph.

The generalized network embedding

problem Network embedding is the task that

aims at learning a mapping function from a

discrete graph to a continuous domain.

Formally, given a graph G = (V, E) with

weighted adjacency matrix W ∈ R|V |×|V |, the

goal is to learn low-dimensional vector

representations {Zi}i∈V

(embeddings) for nodes in the graph {vi}i∈V , such that

important graph properties (e.g. local or global

structure) are preserved in the embedding space. For

instance, if two nodes have similar connections in the

original graph, their learned vector representations

should be close. Let Z ∈ R|V |×d denote the node2

embedding matrix. In practice, we often want low-

dimensional embeddings (d |V |) for scalability

purposes. That is, network embedding can be viewed

as a dimensionality reduction technique for graph

structured data, where the input data is defined on a

non- Euclidean, high-dimensional, discrete domain.

NODE FEATURES IN NETWORK EMBEDDING

Definition 9 (Vertex and edge fields). A vertex field

is a function defined on vertices f : V → R and

similarly an edge field is a function defined on edges:

F : E → R. Vertex fields and edge fields can be viewed

as analogs of scalar fields and tensor fields on

manifolds. Graphs may have node attributes (e.g.

gender or age in social networks; article contents for

citation networks) which can be represented as

multiple vertex fields, commonly referred to as node

features. In this survey, we denote node features with

X ∈ R|V |×d0 , where d0 is the input feature dimension.

Node features might provide useful information

about a graph. Some network embedding algorithms

leverage this information by learning mappings:

W, X → Z.
In other scenarios, node features might be unavailable

or not useful for a given task: net- work embedding

can be featureless. That is, the goal is to learn graph

representations via mappings:

W → Z.
Although we present the model taxonomy via embedding

nodes yielding Z ∈ R|V |×d, it can also be extended for

models that embed an entire graph i.e. with Z ∈ Rd as a d-

dimensional vector for the whole graph (e.g. (Duvenaud et

al., 2015; Al-Rfou et al., 2019)), or embed graph edges Z

∈ R|V |×|V |×d as a (potentially sparse) 3D matrix with Zu,v ∈

Rd representing the embedding of edge (u, v). Note that

depending on whether node features are used or not in

the embedding algorithm, the learned representation

could capture different aspects about the graph. If nodes

features are being used, embeddings could capture both

structural and semantic graph information. On the

other hand, if node features are not being used,

embeddings will only preserve structural

information of the graph.

Finally, note that edge features are less common than

node features in practice, but can also be used by

embedding algorithms. For instance, edge features

can be used as regularization for node embeddings

(Chen et al., 2018c), or to compute messages from

neighbors as in message passing networks (Gilmer et

al., 2017).

TRANSDUCTIVE AND INDUCTIVE

NETWORK EMBEDDING

Historically, a popular way of categorizing a network
embedding method has been by whether the model

can generalize to unseen data instances – methods

are referred to as operating in either a

transductive or inductive setting (Yang et al.,

2016). While we do not use this concept for

constructing our taxonomy, we include a brief

discussion here for completeness.

In transductive settings, it assumed that all

nodes in the graph are observed in training

(typically the nodes all come from one fixed

graph). These methods are used to infer

information about or between observed nodes in

the graph (e.g. predicting labels for all nodes,

given a partial labeling). For instance, if a

transductive method is used to embed the nodes

of a social network, it can be used to suggest new

edges (e.g. friendships) between the nodes of the

graph. One major limitation of models learned

in transductive settings is that they fail to

generalize to new nodes (e.g. evolving graphs)

or new graph instances.

On the other hand, in inductive settings,

models are expected to generalize to new

nodes, edges, or graphs that were not observed

during training. Formally, given training

graphs (G1, . . . , Gk), the goal is to learn a

mapping to continuous representations that

can generalize to unseen test graphs (Gk+1, . . .

, Gk+l). For instance, inductive learning can be

used to embed molecular graphs, each

representing a molecule structure (Gilmer et

al., 2017), generalizing to new graphs and

showing error margins within chemical

accuracy on many quantum properties.

Embedding dynamic or temporally evolving

graphs is also another inductive graph

embedding problem.

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

8

There is a strong connection between inductive

graph embedding and node features (Sec- tion

2.2.1) as the latter are usually necessary for most

inductive graph representation learn- ing

algorithms. More concretely, node features can be

leveraged to learn embeddings with parametric

mappings and instead of directly optimizing the

embeddings, one can optimize the mapping’s

parameters. The learned mapping can then be

applied to any node (even those that were not

present a training time). On the other hand, when

node features are not available, the first mapping

from nodes to embeddings is usually a one-hot

encoding which fails to generalize

to new graphs where the canonical node ordering is not

available.

Finally, we note that this categorization of graph

embedding methods is at best an incomplete lens for

viewing the landscape. While some models are

inherently better suited to different tasks in practice,

recent theoretical results (Srinivasan and Ribeiro,

2020) show that models previously assumed to be

capable of only one setting (e.g. only transductive)

can be used in both.

POSITIONAL VS STRUCTURAL NETWORK

EMBEDDING

An emerging categorization of graph embedding
algorithms is about whether the learned embeddings are

positional or structural. Position-aware embeddings

capture global relative positions of nodes in a graph

and it is common to refer to embeddings as positional

if they can be used to approximately reconstruct the

edges in the graph, preserving distances such as shortest

paths in the original graph (You et al., 2019). Examples

of positional embedding algorithms include random

walk or matrix factorization methods. On the other hand,

structure-aware embeddings capture local structural

information about nodes in a graph, i.e. nodes with

similar node features or similar structural roles in a

network should have similar embeddings, regardless of

how far they are in the original graph. For instance,

GNNs usually learn embeddings by incorporating

information for each node’s neighborhood, and the

learned representations are thus structure-aware.

In the past, positional embeddings have commonly been

used for unsupervised tasks where positional

information is valuable (e.g. link prediction or

clustering) while structural embeddings have been used

for supervised tasks (e.g. node classification or whole

graph classification). More recently, there has been

attempts to bridge the gap between positional and

structural representations, with positional GNNs (You et

al., 2019) and theoretical frameworks showing the

equivalence between the two classes of embeddings

(Srinivasan and Ribeiro, 2020).

UNSUPERVISED AND SUPERVISED NETWORK

EMBEDDING

Depending on whether extra information
like node or graph labels is supplied,
network embedding may be either
supervised or unsupervised. The former case
involves using simply the graph structure
and, in certain cases, node attributes.
Optimization of a reconstruction loss—a
measure of the learnt embeddings' ability to
mimic the original graph—is often used in
unsupervised network embedding with the
objective of learning embeddings that retain
the graph structure. The objective of
supervised network embedding is to
improve models for a particular job, such
graph or node classification, and to train
embeddings for a specific purpose, like
predicting graph or node properties. In
Section 3, we go into further depth on the
distinctions between supervised and
unsupervised approaches, and we utilize the
amount of supervision to construct our
taxonomy.

A Taxonomy of Graph

Embedding Models
We first describe our proposed framework,

GRAPHEDM, a general framework for GRL

(Sec- tion 3.1). In particular, GRAPHEDM is

general enough that it can be used to succinctly

de- scribe over thirty GRL methods (both

unsupervised and supervised). We use

GRAPHEDM to introduce a comprehensive

taxonomy in Section 3.2 and Section 3.3, which

summarizes exiting works with shared notations

and simple block diagrams, making it easier to

under- stand similarities and differences

between GRL methods.

The GraphEDM framework
The GRAPHEDM framework builds on top of

the work of Hamilton et al. (2017b), which

describes unsupervised network embedding

methods from an encoder-decoder perspective.

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

9

Figure 2: Illustration of the GRAPHEDM framework. Based on the supervision

available, methods will use some or all of the branches. In particular,

unsupervised methods do not leverage label decoding for training and only

optimize the similarity or dissimilarity decoder (lower branch). On the other

hand, semi-supervised and supervised methods leverage the additional

supervision to learn models’ parameters (upper branch).
Cruz et al. (2019) also recently proposed a modular

encoder-based framework to describe and compare

unsupervised graph embedding methods. Different

from these unsupervised frameworks, we provide a

more general framework which additionally

encapsulates super- vised graph embedding methods,

including ones utilizing the graph as a regularizer

(e.g. Zhu and Ghahramani (2002))E, and graph neural

networks such as ones based on message passing

(Gilmer et al., 2017; Scarselli et al., 2009) or graph

convolutions (Bruna et al., 2014; Kipf and Welling,

2016a).

Input The GRAPHEDM framework takes as input

an undirected weighted graph G = (V, E), with

adjacency matrix W ∈ R|V |×|V |, and optional

node features X ∈ R|V |×d0 . In (semi-)supervised

settings, we assume that we are given training

target labels for nodes (denoted N), edges (denoted

E), and/or for the entire graph (denoted G). We

denote the supervision signal as S ∈ {N, E, G}, as

presented below.

Model The GRAPHEDM framework can be

decomposed as follows:

Graph encoder network ENCΘE : R|V |×|V | × R|V
|×d0

→ R|V |×d, parameterized by Θ , which combines

the graph structure with node features (or not)

to produce node embedding matrix Z ∈ R|V |×d

as:

Z = ENC(W, X; ΘE).
As we shall see next, this node embedding

matrix might capture different graph prop- erties

depending on the supervision used for training.

Graph decoder network DECΘD : R|V |×d → R|V |×|V
|, parameterized by ΘD, which uses the node
embeddings Z to compute similarity or dissimilarity

scores for all noydEe pairs, producing a matrix Ŵ ∈

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

10

R|V |×|V | as:

Ŵ = DEC(Z; ΘD).

Classification network DECΘS : R|V |×d → R|V
|×|Y|, where Y is the label space. This network is

used in (semi-)supervised settings and

parameterized by Θ .

The output is a distribution over the labels yˆS ,

using node embeddings, as:
yS = DEC(Z; ΘS).

^

 ̂

Our GRAPHEDM framework is general (see Fig. 2

for
an illustration). Specific choices of the
aforementioneydG (encoder and decoder) networks
allows GRAPHEDM to

realize specific graph embedding methods. Before

presenting the taxonomy and showing realizations

of various methods using our framework, we briefly

discuss an application perspective.

Output The GRAPHEDM model can return a

reconstructed graph similarity or dissim-

ilarity matrix Ŵ (often used to train unsupervised

embedding algorithms), as well as a

output labels yS for superv^ised applications. The

label output space Y varies depending on the
supervised application.

Node-level supervision, with yN ∈ Y|V |, where^ Y

represents the node label space. If Y is categorical,

then this is also known as (semi-)supervised node

classification (Section 6.2.1), in which case the label

decoder network produces labels for each node in

the graph. If the embedding dimensions d is such

that d =

|Y|, then the label decoder network can be just a

simple softmax activation across the rows of Z,

produc-

ing a distribution over labels for each node.

Additionally, the graph decoder network might also

be used in supervised node-classification tasks, as it

can be used to regu- larize embeddings (e.g.

neighbor nodes should have nearby embeddings,

regardless of node
{ΘE, ΘD, ΘS} denote all model parameters. ing a

combination of the following loss terms:

Supervised loss term, LS , which compares

the labels).

|V | ×E |dV g| e-level supervision, with ̂ ∈
Y , where Y
represents the edge label

space. For example, Y can be

multinomial in knowledge graphs (for

describing the

types of relationships between two

entities), setting Y = {0, 1}#(relation types).

 It iSs

common to have #(relation types) = 1, and
this is is known as link nomenclature and

position link prediction as an
unsupervised task (Section 4). Then in

lieu of yE we utilize W , the output of the
graph decoder network (which is learned
to reconstruct a target similarity or

dissimilarity matrix) to rank potential
edges.

Graph-level supervision, with ^ ∈ Y,

where Y is the graph label space. In
the graph classification task (Section 6.2.2),

the label decoder network converts node

embeddings into a single graph labels, using

graph pooling via the graph edges captured

by W . More concretely, the graph pooling

operation is similar to pooling in standard

CNNs, where the goal is to downsample local

feature representations to capture higher-

level information. However, unlike images,

graphs don’t have a regular grid structure and

it is hard to define a pooling pattern which

could be applied to every node in the graph.

A possible way of doing so is via graph

coarsening, which groups similar nodes into

clusters to produce smaller graphs

(Defferrard et al., 2016). There exist other

pooling methods on graphs such as DiffPool

(Ying et al., 2018b) or SortPooling (Zhang et

al., 2018b) which creates an ordering of nodes

based on their structural roles in the graph.

Details about graph pooling operators is

outside the scope of this work and we refer the

reader to recent surveys (Wu et al., 2019) for

a more in-depth treatment.

Taxonomy of objective functions
We now focus our attention on the optimization

of models that can be described in the

GRAPHEDM framework by describing the

loss functions used for training. Let Θ =

Historical Context

There is a general two-step process that

most machine learning models adhere to.

Initially, they forego the need of human

 ̂

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

11

feature building in favor of automatically

extracting significant patterns from data.

According to Bengio et al. (2013), this is the

part where representation learning takes

place. A second step involves putting these

representations to use in supervised (like

classification) or unsupervised (like

clustering, visualization, and nearest-

neighbor search) applications further down

the line. This task is referred to as

 downstream

 processing.3 To facilitate the

downstream process, a good data

representation should be both expressive

and concise, preserving the original data's

significant qualities. Overfitting and other

problems induced by the curse of

dimensionality may be mitigated, for

example, by using low-dimensional

representations of high-dimensional

datasets. When it comes to GRL, a graph

encoder is used for representation learning,

while a graph or label decoder is employed

for jobs further down the line, such as node

classification and link prediction. Graph

encoder-decoder networks have

traditionally been used for manifold

learning. It is usual to presume that input

data, even if it exists on a high-dimensional

Euclidean space, is inherently contained on

a low-dimensional manifold. The classic

manifold hypothesis describes this. This

inherently low-dimensional manifold is

what manifold learning methods aim to

retrieve. A discrete approximation of the

manifold is often constructed initially, in the

form of a graph with edges connecting

adjacent points in the ambient Euclidean

space. Graph distances are a reasonable

surrogate for local and global manifold

distances because manifolds are locally

Euclidean. Secondly, while keeping graph

distances as accurate as feasible, "flatten"

this representation of the graph by learning

a non-linear mapping from graph nodes to

points in low-dimensional Euclidean space.

Typically, these representations are more

manageable compared to the initial high-

dimensional ones, and they may

subsequently be used in subsequent

applications.

When looking for solutions to the

manifold learning issue, non-linear4

dimensionality reduction strategies

were all the rage in the early 2000s. For

example, spectral approaches are used

by Laplacian Eigenmaps (LE) (Belkin

and Niyogi, 2002) to calculate

embeddings, and IsoMap (Tenenbaum

et al., 2000) to maintain global network

geodesics by a mix of the Floyd-

Warshall algorithm and the

conventional Multi-dimensional

scaling algorithm. In Section 4.1.1, we

outline a few of these techniques that

use shallow encoders. Despite their

significant influence on machine

learning, manifold dimensionality

reduction approaches are not scalable to

big datasets. Consider the time

complexity of IsoMAP: it exceeds

quadratic time due to the need to

compute all pairs of shortest pathways.

Since the mappings from node to

embeddings are non-parametric, they

cannot generate embeddings for

additional datapoints, which is a

potentially more significant drawback.

The issue of graph embedding has seen

several proposals for non-shallow

network topologies in recent years. Our

GRAPHEDM framework may be used

to define graph neural networks and

graph regularization networks. When

compared to traditional approaches,

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

12

GRL models often provide more

expressive, scalable, and generalizable

embeddings due to their use of deep

neural networks' expressiveness.

In the next sections, we review recent methods for

supervised and unsupervised graph embedding

techniques using GRAPHEDM and summarize the

proposed taxonomy in Fig. 3.

Unsupervised Graph Embedding
Using the taxonomy outlined earlier, we

will now provide a summary of current

methods for unsupervised graph

embedding. Without using task-specific

labels for the network or its nodes, these

approaches map the graph into a continuous

vector space, including its edges and/or

nodes. By learning to rebuild matrices that

measure the similarity or dissimilarity

between nodes, such as the adjacency

matrix, some of these approaches aim to

learn embeddings that maintain the network

structure. There are methods that use a

contrastive objective. For example, one

could compare nearby node-pairs to

faraway ones: nodes that are co-visited in

short random walks should have a higher

similarity score than distant ones. Another

would compare real graphs to fake ones: the

mutual information between a graph and all

of its nodes should be higher in real graphs

than in fake ones.

Shallow embedding methods

The encoder function in shallow embedding

techniques is a basic embedding lookup;

these methods are transductive graph

embedding methods. The shallow encoder

function is simply: for every node vi in V,

there is a corresponding low-dimensional

learnable embedding vector Zi in Rd.

Z = ENC(ΘE)

= ΘE ∈ R|V |×d.

The data structure in the embedding

space matches the underlying graph

structure, thanks to learnt node

embeddings. Generally speaking, it's

not dissimilar to principal component

analysis (PCA) and other

dimensionality reduction techniques;

however, the input data may not be

linear. Specifically, graph embedding

issues may be addressed using

techniques for non-linear

dimensionality reduction, which often

begin with constructing a discrete graph

from the data in order to approximate

the manifold. We take a look at the

distance-based and outer product-based

approaches to shallow graph

embedding.

Distance-based methods By using a

preset distance function, these

approaches maximize embeddings in a

way that keeps points that are close

together in the graph (as shown by their

graph distances, for example) as near

together in the embedding space as

feasible. In a formal sense, the decoder

network may provide either non-

Euclidean (Section 4.1.2) or Euclidean

(Section 4.1.1) embeddings by

computing pairwise distance for a

certain distance function d2:

We now cover

spectrum-free

methods, which

approximate

convolutions in

the spectral do-

 main

 overcoming

computational limitations

of SCNNs by avoiding

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

13

explicit

computation of

the Laplacian’s

eigendecompositi

on.

SCNNs filters

are neither

localized nor

paramet-

in Eq. (17) are all free. To overcome
this

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

14

issue, sprectrum-free methods

use polynomial expansions to

approximate

(a) GCN layers. (b) HGCN layers.

Figure 13: Euclidean (left) and hyperbolic (right) embeddings of a tree

graph. Hyperbolic embeddings learn natural hierarchies in the embedding

space (depth indicated by color). Reprinted with permission from (Chami et

al., 2019).
Non-Euclidean Graph Convolutions
Hyperbolic shallow

embeddings enable embeddings of hierarchical

graphs with smaller dis- tortion than Euclidean

embeddings. However, one major downside of shallow

embeddings is that they are inherently transductive and

cannot generalize to new graphs. On the other hand,

Graph Neural Networks, which leverage node features,

have achieved state-of-the-art performance on inductive

graph embedding tasks.Recently, there has been interest

in extending Graph Neural Networks to learn non-

Euclidean embeddings and thus benefit from both the

expressiveness of Graph Neural Networks and hyperbolic

geometry. One major challenge in doing so is how to

perform convolutions in a non- Euclidean space, where

standard operations such as inner products and matrix

multiplications are not defined.

Hyperbolic Graph Convolutional Neural

Networks (HGCN) (Chami et al., 2019) and

Hyperbolic Graph Neural Networks (HGNN) (Liu et

al., 2019) apply graph convolutions in hyperbolic space

by leveraging the Euclidean tangent space, which

provides a first-order approximation of the hyperbolic

manifold at a point. For every graph convolution step,

node embeddings are mapped to the Euclidean tangent

space at the origin, where convolutions are applied, and

then mapped back to the hyperbolic space. These

approaches yield significant improvements on graphs

that exhibit hierarchical structure (Fig. 13).

Summary of supervized graph embedding
This section presented a number of methods that process

task labels (e.g., node or graph labels) at training time. As

such, model parameters are directly optimized on the

upstream task.

Shallow methods use neither node features X nor

adjacency W in the encoder (Section 5.1), but utilize the

adjacency to ensure consistency. Such methods

are useful in transductive settings, if only one graph is

given, without node features, a fraction of nodes are

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

15

labeled, and the goal is to recover labels for unlabeled

nodes.

Applications

Many different kinds of applications, both

supervised and unsupervised, may benefit

from graph representation learning

techniques. When learning embeddings in an

unsupervised setting, task-specific labels are

not processed. Instead, the graph serves as a

tool for self- monitoring. Using unsupervised

embedding techniques (Section 4, top branch

of the Taxonomy in Fig. 3), one may learn

embeddings that preserve the network (i.e.

neighborhoods) or the structural equivalence

of nodes (for distinction, see Section 2.2.3).

Alternatively, in supervised applications,

such as graph or node classification, the

optimization of node embeddings is done

directly for a particular job. Section 5, the

bottom branch of the Taxonomy in Figure 3,

describes supervised embedding approaches

that may be used in this context. Here are a

few of the most common GRL jobs and the

methods used to do them, as shown in Table

5. What follows is a rundown of typical

supervised and unsupervised graph uses.

Unsupervised applications
GRAPH RECONSTRUCTION

Graph reconstruction is the gold standard for

unsupervised graph applications. The

objective here is to train mapping functions

(parametric or not) that retain graph features

like node similarity while mapping nodes to

 dense distributed representations. By

reducing a reconstruction error—the error in

retrieving the original graph from learnt

embeddings—models may be trained, and

graph reconstruction doesn't need any

supervision. For some instances of

reconstruction aims, see Section 4, and to

learn about the techniques used for this

purpose, see Section 5. Similar to

dimensionality reduction, the overarching

objective of graph reconstruction is to

combine incoming data into a low-

dimensional representation. Graph

reconstruction models aim to compress data

specified on graphs into low-dimensional

vectors, rather than the usual way of reducing

dimensionality (e.g., principal component

analysis) which involves converting high-

dimensional vectors into low- dimensional ones.

10.1.1 LINK PREDICTION

The goal of link prediction is to forecast

which edges in a graph will eventually take a

certain path. To rephrase, link prediction

tasks aim to anticipate the appearance of

linkages that have not yet been detected, such

as links that might emerge in the future for

networks that are both dynamic and temporal.

Furthermore, malicious links may be located

and eliminated with the use of link

prediction. Common examples of this kind of

 application are

recommendation systems that utilize graph

learning models to forecast the interactions

between users and products and social

networks that use these models to forecast the

friendships between users.

Method
Training complexity

Training

input
Memory Computation

(a) DeepWalk (Perozzi, 2014) O(|V |d) O(c2d|V | log2 |V |)

 (b) node2vec (Grover, 2016) O(|V |d) O(c2d|V |)

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

16

LINE (Tang, 2015)
(c) HOPE (Ou,

2016) GF
(Ahmed, 2013)

O(|V |d) O(|E|d)

W

(d)
SDNE (Wang,
2016) DNGR
(Cao, 2016)

O(|V |bD) O(|V |bM)

(e)
GraRep (Cao, 2015)

WYS (Abu-el-haija, 2018)
O(|V |2) O(|V |3c + |V |2d)

(f) HARP (Chen, 2018) inherits W

(g) Splitter (Epasto, 2019) inherits W

(h) MDS (Kruskal, 1964) O(|V |2) O(|V |3)

X induces W (i)
LP (Zhu, 2002)

LLE (Roweis, 2000)
O(|V |) O(|E| × iters)

(j) GNN Methods O(|V |D) O(|E|D + |V |M) X, W

(k) SAGE (Hamilton, 2017) O(bFHD) O(bFH—1D + bFHM) X, W

(l) GTTF (Markowitz, 2021) O(bFHD) O(bFH—1D + bFHM) X, W

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

17

Summarization and real-world applications

of GRL techniques (Table 5). The columns

running from right to left show the

following: method classes, the hardware

cost to train the method, and real cases

where the methods have been useful: inputs

to the methods, which may be either an

adjacency matrix (W) or node characteristics

(X), or both. This is how we get the Training

Complexity. In the method classes (a-h), "c"

represents the size of the context (such as

the length of a random walk) and "d" the

size of the embedding dictionary; both are

parameters of node embedding techniques.

The embedding dictionary is stored in (a)

DeepWalk and (b) node2vec, with (V d)

floating-point entries. During training, a

predetermined number of walks with a

defined duration are simulated from every

node V. Along these walks, the dot products

of all node-pairs within a window of size c

are computed. Both the hierarchical softmax

(a) and the negative sampling (b) are applied

to every pair. To see the complexity per

batch, just replace the two V terms on the

left with batch size b. But to keep things

simple, we look at it per period. (c) All

edges are cycled through by LINE (Tang,

2015), HOPE (Ou, 2016), and GF (Ahmed,

2013). (d) The adjacency matrix is used to

train auto- encoders via SDNE and DNGR,

with batch- size b, and the total dimensions

of all layers denoted by A dA. To handle

floating-point

operations in matrix multiplications, the

formula = A dAdA+1 is used. With full-

batch, b equals V. (e) GraRep and WYS store

a dense square matrix with (V 2) non-zero

elements, and they elevate the transition

matrix to the power of c. Their complexity

is algorithm- specific since (f) HARP

(Chen, 2018) and (g) Splitter can execute

any algorithm, for example, (a-e). In this

case, we assume that both the average

number of persons per node for Splitter and

the number of times HARP is activated (the

graph's scales) are minimal (V).

(h) While LE necessitates the entire

eigendecomposition of the graph laplacian

matrix (to get the eigenvectors

corresponding to the fewest eigenvalues),

MDS calculates all-pairs similarity. If the

number of label classes is small, (i) LP and

LLE will loop over edges up to "iters"

iterations. (j) include GCN, GAT,

MixHop, GIN, GGNN, MPNN,

ChebNet, and MoNet graph convolution

algorithms (Kipf, 2016; Defferrard,

2016;

Abu-el-haija, 2019; Xu, 2018; Li, 2015;
Gilmer, 2017; Xu, 2018; Xu, 2018; Monti,

2017). The creators of those techniques gave

a full-batch implementation, which we

presume is naïve. After adding up all of the

floating- point operations performed by its

neighbors (a total of E floats), each node in

a given layer multiplies that total by the

layer filter (a total of V floats). Lastly,

sampling approaches such as (k-l) enable

learning to scale to bigger networks by

reducing the hardware required of the

training algorithm and separating memory

complexity from graph size. (k) For each

node in the batch (with a size of b), (l) GTTF

samples F nodes, and for each node's

neighbors, F as well. This continues until

the tree height reaches H. We disregard the

runtime complexity of data pre-processing

for(k) and (l) since it has to be calculated

only once per graph, independent of the

number of (hyperparameter) sweep

computations. A common approach for

training link prediction models is to mask some

edges in the graph (positive and negative edges),

train a model with the remaining edges and then

test it on the masked set of edges. Note that link

prediction is different from graph reconstruction.

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

18

In link prediction, we aim at predicting links that

are not observed in the original graph while in

graph reconstruction, we only want to compute

embeddings that preserve the graph structure

through reconstruction error minimization.
Finally, while link prediction has similarities with

supervised tasks in the sense that we have labels for

edges (positive, negative, unobserved), we group it

under the unsupervised class of applications since edge

labels are usually not used during training, but only

used to measure the predictive quality of embeddings.

That is, models described in Section 4 can be applied

to the link prediction problem.

12.1.1 CLUSTERING

3. The discovery of

communities is one of the

numerous

 real-world

applications of clustering.

For example, clusters may

be seen in biological

networks (as collections

of proteins with shared

characteristics) or social

networks (as associations

of individuals with same

interests).

Keep in mind that clustering

issues may be solved using the

unsupervised

 approac

hes discussed in this review.

For example, one might apply

a clustering algorithm, such as

k- means, to embeddings that

are produced by an encoder.

Another option is to include

clustering into the learning

process while using a shallow

or Graph Convolution

embedding model

(Rozemberczki et al., 2019;

Chiang et al., 2019; Chen et

al., 2019a).

13.1.1 VISUALIZATION

4. For visualizing graphs,

there are several ready-

made tools that map nodes

onto two- dimensional

manifolds. Network

scientists are able to get a

qualitative understanding

of graph characteristics,

node interactions, and

node clusters via the use

of visualizations. Force-

Directed Layouts-based

approaches with different

web- app Javascript

implementations are

among the popular tools.

To achieve this

visualization, one can use

an unsupervised graph

embedding method such

as t- distributed stochastic

neighbor embeddings (t-

SNE) or principal

component analysis

(PCA) after training an

encoder-decoder model

(which is equivalent to a
shallow embedding or graph

convolution network) (Maaten

and Hinton, 2008; Jolliffe, 2011).

Graph learning techniques are

often evaluated qualitatively

using this approach (embedding

→ dimensionality

reduction). To color the

nodes in 2D visualization

plots, one may utilize their

characteristics if the nodes

have any. As seen in visual

representations of

different approaches,

good embedding

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

19

algorithms place nodes in

the embedding space that

have comparable

properties close together

(Perozzi et al., 2014; Kipf

and Welling, 2016a; Abu-

El-Haija et al., 2018). To

conclude, approaches that

map every graph to a

representation may also be

projected into two

dimensions to display and

qualitatively assess graph-

level features, in addition

to mapping every node to

a 2D coordinate (Al-Rfou

et al., 2019).

4.1 Supervised applications

4.1.1 NODE CLASSIFICATION

5. An essential supervised

graph application is node

classification, which aims

to develop representations

of nodes that can reliably

predict their labels. In

citation networks, node

labels may represent

scientific

subjects; in social networks,

they might represent gender

and other characteristics. One

typical use case is semi-

supervised node classification

due to the high cost and time

commitment associated with

labeling huge graphs. The

objective in semi-supervised

situations is to use node

linkages to predict

characteristics of unlabeled

nodes, with just a small

percentage of nodes being

tagged. Since there is a single

partly labeled fixed graph in

this context, it is considered

transductive. Inductive node

classification is another

option; this is the process of

determining how to categorize

nodes in different

 networ

ks. Keep in mind that if the

node attributes are descriptive

of the goal label, they may

greatly improve performance

on classified nodes jobs. In

fact, by integrating structural

data with semantic

information derived from

features, state-of-the-art

performance on multiple node

classification benchmarks has

been attained by more recent

approaches as GCN (Kipf and

Welling, 2016a) or

GraphSAGE (Hamilton et al.,

2017a). However, other

approaches, such random

walks on graphs, do not take

use of feature information and

so perform worse on these

tasks.
15.1.1 GRAPH

CLASSIFICATION

One example of a supervised application is graph

classification, the goal of which is to use an input graph to

predict labels at the graph level. Due to the constant

introduction of novel graphs during testing, graph

classification problems are fundamentally

 inductive. Biochemical activities and online social

networks are also common choices. Graphs representing

molecules are often used in the biological field. A feature

vector that is a 1-hot encoding of an atom's number may

serve as a node in these graphs, and a bond can be

represented by an edge between two nodes, with the kind

of the bond being indicated by the feature vector. One

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

20

example of a task-dependent graph-level label is

MUTANG, which indicates the mutagenicity of a

medicine against bacteria (Debnath et al., 1991).

Typically, people are represented as nodes in online social

networks, while connections or interactions are

symbolized by edges. As an example, there are a lot of

graphs in the Reddit graph classification jobs

 (Yanardag and Vishwanathan,

2015). An edge will link two nodes in a graph that

represents a conversation thread, such as when one person

comments on another's remark.

Given a comment graph, the objective is to identify the

community (sub-reddit) where the conversation occurred.

While tasks such as node classification and edge

prediction include pooling at the node and edge levels,

respectively, graph classification tasks need a different

kind of pooling to aggregate data at the node and graph

levels. As said before, expanding this concept of pooling

to any kind of graph is a challenging and ongoing topic of

study. Node order shouldn't affect the pooling function.

For example, several approaches use basic pooling,

including taking the mean or total of all latent vectors at

the node level in the network (Xu et al., 2018). Ying et al.,

2018b; Cangea et al., 2018; Gao and Ji, 2019; Lee et al.,

2019 are among the approaches that employ differentiable

pooling. Tsitsulin et al. (2018a), Al-Rfou et al. (2019),

and Tsitsulin et al. (2020a) all provide supervised

approaches for learning graph- level representations, but

there are also many unsupervised methods. Some

unsupervised graph-level models that stand out include

 reviewed by Viswanathan et al. (2010) and

Kriege et al. (2020) as graph kernels (GKs).Although

GKs are not our primary concern, we do touch on their

links to GRAPHEDM here. Graph-level tasks, such graph

categorization, are suitable for GKs. In order to convert

any two graphs into a scalar, GK may automatically apply

a similarity function. Counting the number of walks (or

pathways) that two graphs have in common is one way

that traditional GKs calculate graph similarity. For

example, each walk may be stored as a series of node

labels. Common practice dictates using node degrees as

labels in the absence of explicit labels. The capacity of

GKs to identify (sub-)graph isomorphism is a common

metric for analysis. When ordering of nodes is ignored, two

(sub-)graphs are considered isomorphic if they are

identical. According to the 1-dimensional Weisfeiler-

Leman (1-WL) heuristic, two sub-graphs are considered

isomorphic since sub-graph isomorphism is NP-hard. In

each graph, histograms are used to tally the statistics of the

nodes (e.g., how many nodes with the label "A" have an

edge to nodes with the label "B"). If two graphs'

histograms, obtained from the same 1-hop neighborhood,

are equal, then the graphs are considered isomorphic

according to the 1-WL heuristic. An example of a GNN

that has been shown to achieve the 1-WL heuristic is the

Graph Isomorphism Network (GIN; Xu et al., 2018). This

means that GIN can only map two graphs to the same

latent vector if they are considered isomorphic according

to the 1-WL heuristic. In some newer studies, GKs and

GNNs are used together. Using the similarity of the

"tangent space" of the goal with respect to the Gaussian-

initialized GNN parameters, Du et al. (2019) models the

similarity of two graphs, and Chen et al.

(2020) extracts walk patterns. There isn't

any GNN training in either (Du et al., 2019;

Chen et al., 2020). Instead, kernel support

vector machines and other kernelized

algorithms are used to the pairwise Gram

matrix during training. Therefore, our GCF

and GRAPHEDM frameworks are not well-

suited to include these methodologies.

However, there are other approaches that

don't rely on indirectly computing graph-to-

graph similarity scalar scores but instead

directly map graphs to high-dimensional

latent spaces. One example is Morris et al.'s

(2019) k-GNN network, which is

deliberately coded as a GNN but can

actually implement the k-WL heuristic

(which is identical to 1-WL but where

histograms are produced up-to k-hop

neighbors). Therefore, our GCF and

GRAPHEDM frameworks can define the k-

GNN model classes.

Conclusion
Open Research Directions We presented a
standard method for comparing ML

models trained on graph-structured data in this survey.
Deep graph embedding techniques, graph auto-
encoders, graph regularization techniques, and graph
neural networks are all included in our expanded
GRAPHEDM framework, which was before used for
unsupervised network embedding. Additionally, we
presented a graph convolution framework (GCF) for
describing and comparing graph neural networks that
rely on convolution, such as spatial and spectral graph
convolutions in particular. We included more than 30
supervised and unsupervised techniques for graph
embedding in our exhaustive taxonomy of GRL
methods, which we presented using this framework.
With any luck, the results of this poll will inspire further

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

21

GRL research, which should lead to solutions for the
problems these models are experiencing right now. The
taxonomy is very useful for practitioners since it helps
them understand the many tools and applications
available and makes it easy to choose the right
technique for each situation. Furthermore, academics
who have just published Researchers may use the
taxonomy to organizetheir inquiries, locate relevant
literature, establish reliable baselines for comparison,
and choose suitable methods for data analysis.
Although GRL approaches have shown to be very
effective in node classification and link prediction,
there are still several issues that need to be
addressed. We then go on to talk about the
difficulties and future prospects of graph
embedding models in terms of research.

Evaluation and benchmarks

Standard benchmarks for node

classification or link prediction are

usually used to evaluate the approaches

presented in this review. To illustrate

the point, graph embedding techniques

are often evaluated against citation

networks. The findings may differ

greatly depending on the datasets' splits

or training processes (such as early

halting), which is a problem with these

tiny citation benchmarks, as shown in

recent research (Shchur et al., 2018).

Using strong and consistent evaluation

methodologies, as well as expanding the

scope of assessment beyond small node

categorization and link prediction

benchmarks, is crucial for the

improvement of GRL approaches. New

graph benchmarks with leaderboards

(Hu et al., 2020; Dwivedi et al., 2020)

and graph embedding libraries (Fey and

Lenssen, 2019; Wang et al., 2019;

Goyal and Ferrara, 2018a) are

examples of recent development in this

approach. Similarly, in order to test

GNNs' reasoning skills, Sinha et al.

(2020) suggested a series of exercises

based on first-

order logic.

Fairness in Graph Learning To

prevent models from correlating'sensitive'

characteristics with the model's predicted

output, a new area called Fairness in Machine

Learning is developing (Mehrabi et al., 2019).

Considering the association of the graph

structure (the edges) and the feature vectors of the
nodes with the final output, these considerations

might be particularly significant for graph learning

challenges.

Bose and Hamilton (2019) state that adversarial

learning is the most prevalent method for

implementing fairness requirements in models.

This method may be used to GRL in order to debias

the model's predictions with respect to the sensitive

feature(s). But there are no certain assurances on

the precise amount of bias eliminated using

adversarial approaches. The debiasing job itself

may be difficult to accomplish with several

debiasing strategies (Gonen and Goldberg, 2019).

Provable guarantees for debiasing GRL have been

the focus of recent work in the field (Palowitch

and Perozzi, 2019).

Application to large and realistic graphs
Graph learning techniques are typically reserved

for datasets of tens of thousands to hundreds of

thousands of nodes. Still, there are far bigger graphs

in the actual world, with billions of nodes. A

Distributed Systems configuration with several

computers, like MapReduce, is necessary for

methods that scale for big graphs (Lerer et al., 2019;

Ying et al., 2018a) (Dean and Ghemawat, 2008). Is

there a way for a researcher to use a home computer

to apply a learning approach to a very big graph that

fits on a single hard drive (e.g., with a one terabyte

size) but does not fit on RAM? See how this stacks

up against a computer vision challenge using a large

picture collection (Deng et al., 2009; Kuznetsova et

al., 2020). Any model that can fit on RAM can be

trained on personal computers, regardless of the size

of the dataset. Graph embedding models, in

particular those whose parameters grow in size as

the graph's nodes do, may find this issue very

difficult to solve.

Even picking the right graph to utilize as input

might be challenging at times in business. The

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

22

Google system Grale, which learns the right graph

from several characteristics, is described by

Halcrow et al. (2020). For graph learning on

massive datasets, Grale uses similarity search

methods (such as locality sensitive hashing). A

recent study by Rozemberczki et al. (2021) adds an

attention network to the Grale model, enabling

end-to-end learning.We anticipate that learning

algorithms for big graphs that are still executable

on a single computer will present new mathematical

and practical problems. We are hopeful that

scholars would prioritize this area so that non-

expert practitioners, like a neurology researcher,

may access and use these learning methods to

evaluate the human brain's sub-graph, which is

comprised of neurons and synapses represented as

nodes and edges.

Molecule generation Learning on

graphs has a great potential for

helping molecular scientists to reduce

cost and time in the laboratory.

Researchers proposed methods for

predicting quantum properties of

molecules (Gilmer et al., 2017;

Duvenaud et al., 2015) and for

generating molecules with some

desired properties (Liu et al., 2018;

De Cao and Kipf, 2018; Li et al.,

2018; Simonovsky and Komodakis,

2018; You et al., 2018). A review of

recent methods can be found in (Elton

et al., 2019). Many of these methods

are concerned with manufacturing

materials with certain properties (e.g.

conductance and malleability), and

others are concerned drug design

(Jin et al., 2018; Ragoza et al., 2017;

Feng et al., 2018).
Combinatorial optimization

Numerous fields encounter

computationally challenging

challenges, such as routing science,

cryptography, decision-making, and

planning. Computationally hard

problems are those for which the

techniques used to find the best solution

have poor scalability. We cite (Bengio

et al., 2018) for a summary of the ways

that have recently attracted attention

insolving combinatorial optimization

issues by using machine learning

approaches, such as reinforcement

 learning.

Recently, there has been interest in using

graph embeddings to approximate solutions

to NP-hard problems (Khalil et al., 2017;

Nowak et al., 2017; Selsam et al., 2018;

Prates et al., 2019). Graphs are a natural

representation for many hard issues, such as

SAT and vertex cover; in fact, many

problems may be described in terms of

graphs. These techniques use a data-driven

approach to solving computationally

difficult issues, such as determining

whether a specific instance (e.g., node) is

part of the best solution from among many

instances of the problem. Find assignments

that strive to accomplish a goal (e.g., the

minimal conductance cut) in other works

that optimize graph partitions (Bianchi et

al., 2020; Tsitsulin et al., 2020b). All

of these methods use GNNs as their starting

point since GNNs, thanks to their relational

inductive biases, can better depict graphs

than regular neural networks (e.g.

permutation invariance). Current solutions

still outperform these data-driven

approaches, but GNNs have shown promise

in generalizing to bigger problem cases

(Nowak et al., 2017; Prates et al., 2019).

Lamb et al. (2020) provides a

comprehensive overview of GNN- based

approaches to combinatorial optimization in

their latest study on neural symbolic

 learni

ng.

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

23

Non-Euclidean embeddings The underlying space

geometry is an important part of graph embeddings,
as we saw in Sections 4.1.2 and 5.6. All graphs are
discrete complex, non-Euclidean structures with

high dimensions; however, there is currently no
simple method for encoding such data into
embeddings with low dimensions that maintain the
graph topology (Bronstein et al., 2017). Hyperbolic
and mixed- product space embeddings are two
examples of non- Euclidean embeddings that have
recently attracted attention and made strides in the
field of learning (Gu et al., 2018; Nickel and Kiela,

2017). In comparison to their Euclidean
counterparts, these non-Euclidean embeddings
have the potential for embeddings that are more
expressive. For example, compared to Euclidean
embeddings, hyperbolic embeddings exhibit
significantly less distortion when representing
hierarchical data (Sarkar, 2011). This has led to

state- of-the-art outcomes in numerous
contemporary applications, including linguistics
tasks (Tifrea et al., 2018; Le et al., 2019) and
knowledge graph link prediction (Balazevic et al.,
2019; Chami et al., 2020).

Non-Euclidean embeddings often bring two

difficulties: first, hyperbolic space precision

problems (e.g., at the Poincar'e ball boundary)

(Sala et al., 2018; Yu and De Sa, 2019), and

second, difficult Riemannian optimization

(Bonnabel, 2013; Becigneul and Ganea, 2018).

Furthermore, it is not apparent how to choose the

appropriate shape for an input graph. An intriguing

area for future research is the process of selecting

or learning the appropriate geometry for a specific

discrete graph, even though there are already

discrete measures for the graphs' tree-likeliness,

such as Gromov's four-point condition

(Jonckheere et al., 2008; Abu-Ata and Dragan,

2016; Chen et al., 2013; Adcock et al., 2013).

Assurances based on theory Recent developments

in graph embedding model design have

outperformed state-of-the- art methods in several

domains. Nevertheless, our knowledge of the

theoretical promises and constraints of graph

embedding models is currently restricted. Xu et al.

(2018), Verma and Zhang (2019), Morris et al.

(2019), and Garg et al. (2020) all apply current

findings from learning theory to the issue of GRL,

which is a new field of study on GNN

representational power. If we want to know what

the theoretical benefits and drawbacks of graph

embedding techniques are, we need to build

theoretical frameworks.

References

By Feodor F. Dragan and Muad Abu-Ata.
Structures resembling metric trees in

actual

networks: a research investigation. In:

Networks, 2016; 67(1): 49–68.

Brian Perozzi, Sami Abu-El-Haija, and

Rami Al-Rfou. Improving edge

representations via low-rank asymmetric

projections. Page 1787– 1796 of the 2017

ACM Conference on Information and

Knowledge Management (CIKM '17)

proceedings.With contributions from Bryan

Perozzi, Alexander A. Alemi, Sami Abu-El-

Haija, and Rami Al-Rfou. Be cautious:

Finding node embeddings via observing

graphs. Page numbers 9180–9190 from the

2018 edition of Advances in Neural

Information Processing Systems.

Participants: Aram Galstyan, Bryan

Perozzi, Bryan Harutyunyan, Nazanin

Alipourfard, Kristina Lerman, Greg Ver

Steeg, and Amol Kapoor. Mixhop is a

method for building higher-order graph

convolutional networks by combining

sparse neighborhoods. Page numbers 21–29

from the 2019 International Conference on

Machine

 Learni

ng.

Blair D. Sullivan, Michael W. Mahoney,

and Aaron B. Adcock. Big social and

information networks have a tree-like

structure. Volume 13, Issue 1, Pages

1–10, 2013 IEEE

International Conference on Data Mining.

2013, IEEE. Vanja Josifovski, Alexan-der J.

Smola, Nino Shervashidze, Shravan

Narayanamurthy, and Amr Ahmed

http://www.ijpast.in/

ISSN 2229-6107 www.ijpast.in

Vol 9,Issuse 1.Jan 2019

24

composed the team. Organic graph

factorization on a distributed, massive scale.

Included in the proceedings of the 22nd

international conference on the World Wide

Web, pages 37-

48. IEEE, 2013. Everyone from Rami Al-

Rfou to Dustin Zelle and Bryan Perozzi were

involved. Ddgk: Deep divergence graph

kernels represented by learned graphs. W3C

2019 Conference Proceedings on the World

Wide Web, 2019.

By Miguel A. Andrade-Navarro, Pablo

Mier, and Gregorio Alanis-Lobato.

Efficiently incorporating complicated

networks into hyperbolic space using

their Laplacian? Submitted to the

journal Scientific Reports on 2016-03-

08.Almeida, Luis B. A com- binatorial

learning rule for asynchronous

perceptrons with feedback. Volume 2,

pages 609-618, Proceedings of the First

International Conference on Neural

Networks. 1987, IEEE. Alan Allen,

Ivana Balazevic, and Timothy

Hospedales... "Multi-relational

Poincaré graph embeddings" Pages

4463–4473 of the 2019 edition of

Advances in Neural Information

Processing Systems.Matt Lai, Danilo

Jimenez Rezende, Peter Battaglia,

Razvan Pascanu, and others. Connected

systems for acquiring knowledge of

physical phenomena, relationships, and

objects. Page numbers 4502-4510 from

the 2016 edition of Advances in Neural

Information Processing Systems.

Regarding relational inductive biases,

deep learning, and graph networks, the

following authors are involved: Peter

W. Battaglia, Jessica B. Hamrick,

Victor Bapst, Alvaro Sanchez-

Gonzalez, Vinicius Zambaldi, Mateusz

Malinowski, Andrea Tacchetti,

Raposo, Adam Santoro, Ryan Faulkner,

and others. 2018 arXiv preprint

arXiv:1806.01261, published here.

http://www.ijpast.in/

